Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Getting Started with XCodec2 on Hugging Face
|
| 2 |
+
|
| 3 |
+
To use `xcodec2`, ensure you have it installed. You can install it using the following command:
|
| 4 |
+
|
| 5 |
+
```bash
|
| 6 |
+
conda create -n xcodec2 python=3.9
|
| 7 |
+
conda activate xcodec2
|
| 8 |
+
pip install xcodec2
|
| 9 |
+
```
|
| 10 |
+
Then,
|
| 11 |
+
```python
|
| 12 |
+
import torch
|
| 13 |
+
import soundfile as sf
|
| 14 |
+
from transformers import AutoConfig
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
from xcodec2.modeling_xcodec2 import XCodec2Model
|
| 18 |
+
|
| 19 |
+
model_path = "HKUST-Audio/xcodec2"
|
| 20 |
+
|
| 21 |
+
model = XCodec2Model.from_pretrained(model_path)
|
| 22 |
+
model.eval().cuda()
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
wav, sr = sf.read("test.wav")
|
| 26 |
+
wav_tensor = torch.from_numpy(wav).float().unsqueeze(0)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
|
| 31 |
+
vq_code = model.encode_code(input_waveform=wav_tensor)
|
| 32 |
+
print("Code:", vq_code )
|
| 33 |
+
|
| 34 |
+
recon_wav = model.decode_code(vq_code).cpu()
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
sf.write("reconstructed.wav", recon_wav[0, 0, :].numpy(), sr)
|
| 38 |
+
print("Done! Check reconstructed.wav")
|
| 39 |
+
```
|