File size: 19,315 Bytes
2285286 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
from transformers.configuration_utils import PretrainedConfig
class HelpingAIConfig(PretrainedConfig):
model_type = "helpingai"
def __init__(
self,
vocab_size=50257,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
max_position_embeddings=2048,
layer_norm_epsilon=1e-5,
hidden_act="gelu",
dropout=0.0,
attention_dropout=0.0,
tie_word_embeddings=True,
# Structured output head
use_structured_output=True,
structured_output_vocab_size=2,
# Speech head
use_speech_output=False,
speech_num_mels=80,
speech_head_hidden_dim=1024,
speech_upsample_factor=1,
speech_loss_type="l1",
# Misc
initializer_range=0.02,
**kwargs,
):
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.layer_norm_epsilon = layer_norm_epsilon
self.hidden_act = hidden_act
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
# Structured
self.use_structured_output = use_structured_output
self.structured_output_vocab_size = structured_output_vocab_size
# Speech
self.use_speech_output = use_speech_output
self.speech_num_mels = speech_num_mels
self.speech_head_hidden_dim = speech_head_hidden_dim
self.speech_upsample_factor = speech_upsample_factor
self.speech_loss_type = speech_loss_type
"""HelpingAI model configuration"""
from transformers.configuration_utils import PretrainedConfig, layer_type_validation
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging
logger = logging.get_logger(__name__)
class HelpingAIConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`HelpingAIModel`]. It is used to instantiate a
HelpingAI model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
HelpingAI-8B [HelpingAI/HelpingAI-8B](https://huggingface.co/HelpingAI/HelpingAI-8B).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the HelpingAI model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`HelpingAIModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22016):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
head_dim (`int`, *optional*, defaults to 128):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any
additional layer afterwards will use SWA (Sliding Window Attention).
layer_types (`list`, *optional*):
Attention pattern for each layer.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
use_emotional_reasoning (`bool`, *optional*, defaults to `True`):
Whether to enable Semantic Emotion Reasoning (SER) capabilities for emotional understanding and processing.
use_perspective_threading (`bool`, *optional*, defaults to `True`):
Whether to enable Perspective Emotion Threading (PET) for multi-threaded emotional reasoning.
num_emotion_heads (`int`, *optional*, defaults to 4):
Number of specialized attention heads dedicated to emotional processing and reasoning.
num_thinking_stages (`int`, *optional*, defaults to 3):
Number of thinking stages for multi-stage reasoning and reflection processing.
emotion_hidden_size (`int`, *optional*, defaults to 512):
Hidden size for the emotional reasoning layers and SER processing modules.
perspective_threads (`int`, *optional*, defaults to 4):
Number of parallel perspective threads for PET processing (relatable, supportive, motivational, analytical).
thinking_depth (`int`, *optional*, defaults to 2):
Depth of thinking layers for internal reasoning and reflection processes.
structured_output_vocab_size (`int`, *optional*, defaults to 100):
Additional vocabulary size for structured output tokens like <think>, <ser>, <pet>, etc.
empathy_scaling_factor (`float`, *optional*, defaults to 1.2):
Scaling factor for empathy-related attention weights and emotional processing.
reasoning_temperature (`float`, *optional*, defaults to 0.8):
Temperature parameter for reasoning and thinking processes to balance creativity and coherence.
use_speech_output (`bool`, *optional*, defaults to `False`):
Whether to enable an additional text-to-speech head that predicts mel-spectrogram frames from hidden states.
speech_num_mels (`int`, *optional*, defaults to `80`):
Number of mel bins to predict for the speech head.
speech_upsample_factor (`int`, *optional*, defaults to `1`):
Temporal upsampling factor to expand token-level hidden states to frame-level resolution by simple repetition.
speech_loss_type (`str`, *optional*, defaults to `"l1"`):
Loss for speech supervision. One of {"l1", "mse"}.
speech_head_hidden_dim (`int`, *optional*, defaults to `None`):
Hidden dimension for the speech head MLP (hidden_size -> speech_head_hidden_dim -> num_mels).
If None, defaults to hidden_size // 2. Increase to scale speech head params (e.g., ~9.6k for ~50M).
```python
>>> from transformers import HelpingAIModel, HelpingAIConfig
>>> # Initializing a HelpingAI style configuration with advanced reasoning
>>> configuration = HelpingAIConfig(
... use_emotional_reasoning=True,
... use_perspective_threading=True,
... num_emotion_heads=4,
... num_thinking_stages=3
... )
>>> # Initializing a model from the HelpingAI-8B style configuration
>>> model = HelpingAIModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "helpingai"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `HelpingAI`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8, # Match num_attention_heads for compatibility
head_dim=128,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
layer_types=None,
attention_dropout=0.0,
# Advanced reasoning parameters
use_emotional_reasoning=False, # Disable by default for now
use_perspective_threading=True,
num_emotion_heads=4,
num_thinking_stages=3,
emotion_hidden_size=512,
perspective_threads=4,
thinking_depth=2,
structured_output_vocab_size=100,
empathy_scaling_factor=1.2,
reasoning_temperature=0.8,
# Structured head architecture (new)
structured_head_type: str = "linear", # one of: linear, mlp_v1
structured_head_hidden_dim: int | None = None,
structured_head_activation: str = "gelu", # gelu or relu
# Speech output head options
use_speech_output=False,
speech_num_mels=80,
speech_upsample_factor=1,
speech_loss_type="l1",
speech_head_hidden_dim=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if self.use_sliding_window else None
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = head_dim
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
# Advanced reasoning capabilities
self.use_emotional_reasoning = use_emotional_reasoning
self.use_perspective_threading = use_perspective_threading
self.num_emotion_heads = num_emotion_heads
self.num_thinking_stages = num_thinking_stages
self.emotion_hidden_size = emotion_hidden_size
self.perspective_threads = perspective_threads
self.thinking_depth = thinking_depth
self.structured_output_vocab_size = structured_output_vocab_size
self.empathy_scaling_factor = empathy_scaling_factor
self.reasoning_temperature = reasoning_temperature
# Structured head architecture spec
self.structured_head_type = structured_head_type
self.structured_head_hidden_dim = structured_head_hidden_dim
self.structured_head_activation = structured_head_activation
# Speech head config
self.use_speech_output = use_speech_output
self.speech_num_mels = speech_num_mels
self.speech_upsample_factor = speech_upsample_factor
self.speech_loss_type = speech_loss_type
self.speech_head_hidden_dim = speech_head_hidden_dim
# Validate emotional reasoning parameters
if self.use_emotional_reasoning and self.num_emotion_heads > self.num_attention_heads:
raise ValueError(f"num_emotion_heads ({self.num_emotion_heads}) cannot exceed num_attention_heads ({self.num_attention_heads})")
if self.use_perspective_threading and self.perspective_threads < 2:
raise ValueError(f"perspective_threads ({self.perspective_threads}) must be at least 2 for meaningful threading")
if self.use_speech_output:
if not isinstance(self.speech_num_mels, int) or self.speech_num_mels <= 0:
raise ValueError("speech_num_mels must be a positive integer")
if not isinstance(self.speech_upsample_factor, int) or self.speech_upsample_factor <= 0:
raise ValueError("speech_upsample_factor must be a positive integer")
if self.speech_loss_type not in {"l1", "mse"}:
raise ValueError("speech_loss_type must be one of {'l1','mse'}")
if self.speech_head_hidden_dim is not None:
if not isinstance(self.speech_head_hidden_dim, int) or self.speech_head_hidden_dim <= 0:
raise ValueError("speech_head_hidden_dim must be a positive integer when provided")
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
self.layer_types = layer_types
if self.layer_types is None:
self.layer_types = [
"sliding_attention"
if self.sliding_window is not None and i >= self.max_window_layers
else "full_attention"
for i in range(self.num_hidden_layers)
]
layer_type_validation(self.layer_types)
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["HelpingAIConfig"]
|