File size: 19,315 Bytes
2285286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
from transformers.configuration_utils import PretrainedConfig


class HelpingAIConfig(PretrainedConfig):
    model_type = "helpingai"

    def __init__(
        self,
        vocab_size=50257,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        max_position_embeddings=2048,
        layer_norm_epsilon=1e-5,
        hidden_act="gelu",
        dropout=0.0,
        attention_dropout=0.0,
        tie_word_embeddings=True,
        # Structured output head
        use_structured_output=True,
        structured_output_vocab_size=2,
        # Speech head
        use_speech_output=False,
        speech_num_mels=80,
        speech_head_hidden_dim=1024,
        speech_upsample_factor=1,
        speech_loss_type="l1",
        # Misc
        initializer_range=0.02,
        **kwargs,
    ):
        super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.max_position_embeddings = max_position_embeddings
        self.layer_norm_epsilon = layer_norm_epsilon
        self.hidden_act = hidden_act
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.initializer_range = initializer_range

        # Structured
        self.use_structured_output = use_structured_output
        self.structured_output_vocab_size = structured_output_vocab_size

        # Speech
        self.use_speech_output = use_speech_output
        self.speech_num_mels = speech_num_mels
        self.speech_head_hidden_dim = speech_head_hidden_dim
        self.speech_upsample_factor = speech_upsample_factor
        self.speech_loss_type = speech_loss_type

"""HelpingAI model configuration"""

from transformers.configuration_utils import PretrainedConfig, layer_type_validation
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging


logger = logging.get_logger(__name__)


class HelpingAIConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`HelpingAIModel`]. It is used to instantiate a
    HelpingAI model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of
    HelpingAI-8B [HelpingAI/HelpingAI-8B](https://huggingface.co/HelpingAI/HelpingAI-8B).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 151936):
            Vocabulary size of the HelpingAI model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`HelpingAIModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 22016):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 32):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
        head_dim (`int`, *optional*, defaults to 128):
            The attention head dimension.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 32768):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        use_sliding_window (`bool`, *optional*, defaults to `False`):
            Whether to use sliding window attention.
        sliding_window (`int`, *optional*, defaults to 4096):
            Sliding window attention (SWA) window size. If not specified, will default to `4096`.
        max_window_layers (`int`, *optional*, defaults to 28):
            The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any
            additional layer afterwards will use SWA (Sliding Window Attention).
        layer_types (`list`, *optional*):
            Attention pattern for each layer.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        use_emotional_reasoning (`bool`, *optional*, defaults to `True`):
            Whether to enable Semantic Emotion Reasoning (SER) capabilities for emotional understanding and processing.
        use_perspective_threading (`bool`, *optional*, defaults to `True`):
            Whether to enable Perspective Emotion Threading (PET) for multi-threaded emotional reasoning.
        num_emotion_heads (`int`, *optional*, defaults to 4):
            Number of specialized attention heads dedicated to emotional processing and reasoning.
        num_thinking_stages (`int`, *optional*, defaults to 3):
            Number of thinking stages for multi-stage reasoning and reflection processing.
        emotion_hidden_size (`int`, *optional*, defaults to 512):
            Hidden size for the emotional reasoning layers and SER processing modules.
        perspective_threads (`int`, *optional*, defaults to 4):
            Number of parallel perspective threads for PET processing (relatable, supportive, motivational, analytical).
        thinking_depth (`int`, *optional*, defaults to 2):
            Depth of thinking layers for internal reasoning and reflection processes.
        structured_output_vocab_size (`int`, *optional*, defaults to 100):
            Additional vocabulary size for structured output tokens like <think>, <ser>, <pet>, etc.
        empathy_scaling_factor (`float`, *optional*, defaults to 1.2):
            Scaling factor for empathy-related attention weights and emotional processing.
        reasoning_temperature (`float`, *optional*, defaults to 0.8):
            Temperature parameter for reasoning and thinking processes to balance creativity and coherence.
        use_speech_output (`bool`, *optional*, defaults to `False`):
            Whether to enable an additional text-to-speech head that predicts mel-spectrogram frames from hidden states.
        speech_num_mels (`int`, *optional*, defaults to `80`):
            Number of mel bins to predict for the speech head.
        speech_upsample_factor (`int`, *optional*, defaults to `1`):
            Temporal upsampling factor to expand token-level hidden states to frame-level resolution by simple repetition.
        speech_loss_type (`str`, *optional*, defaults to `"l1"`):
            Loss for speech supervision. One of {"l1", "mse"}.
        speech_head_hidden_dim (`int`, *optional*, defaults to `None`):
            Hidden dimension for the speech head MLP (hidden_size -> speech_head_hidden_dim -> num_mels).
            If None, defaults to hidden_size // 2. Increase to scale speech head params (e.g., ~9.6k for ~50M).

    ```python
    >>> from transformers import HelpingAIModel, HelpingAIConfig

    >>> # Initializing a HelpingAI style configuration with advanced reasoning
    >>> configuration = HelpingAIConfig(
    ...     use_emotional_reasoning=True,
    ...     use_perspective_threading=True,
    ...     num_emotion_heads=4,
    ...     num_thinking_stages=3
    ... )

    >>> # Initializing a model from the HelpingAI-8B style configuration
    >>> model = HelpingAIModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "helpingai"
    keys_to_ignore_at_inference = ["past_key_values"]

    # Default tensor parallel plan for base model `HelpingAI`
    base_model_tp_plan = {
        "layers.*.self_attn.q_proj": "colwise",
        "layers.*.self_attn.k_proj": "colwise",
        "layers.*.self_attn.v_proj": "colwise",
        "layers.*.self_attn.o_proj": "rowwise",
        "layers.*.mlp.gate_proj": "colwise",
        "layers.*.mlp.up_proj": "colwise",
        "layers.*.mlp.down_proj": "rowwise",
    }
    base_model_pp_plan = {
        "embed_tokens": (["input_ids"], ["inputs_embeds"]),
        "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
        "norm": (["hidden_states"], ["hidden_states"]),
    }

    def __init__(
        self,
        vocab_size=151936,
        hidden_size=4096,
        intermediate_size=22016,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=8,  # Match num_attention_heads for compatibility
        head_dim=128,
        hidden_act="silu",
        max_position_embeddings=32768,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        attention_bias=False,
        use_sliding_window=False,
        sliding_window=4096,
        max_window_layers=28,
        layer_types=None,
        attention_dropout=0.0,
        # Advanced reasoning parameters
        use_emotional_reasoning=False,  # Disable by default for now
        use_perspective_threading=True,
        num_emotion_heads=4,
        num_thinking_stages=3,
        emotion_hidden_size=512,
        perspective_threads=4,
        thinking_depth=2,
        structured_output_vocab_size=100,
        empathy_scaling_factor=1.2,
        reasoning_temperature=0.8,
    # Structured head architecture (new)
    structured_head_type: str = "linear",  # one of: linear, mlp_v1
    structured_head_hidden_dim: int | None = None,
    structured_head_activation: str = "gelu",  # gelu or relu
        # Speech output head options
        use_speech_output=False,
        speech_num_mels=80,
        speech_upsample_factor=1,
        speech_loss_type="l1",
        speech_head_hidden_dim=None,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.use_sliding_window = use_sliding_window
        self.sliding_window = sliding_window if self.use_sliding_window else None
        self.max_window_layers = max_window_layers

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.head_dim = head_dim
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        
        # Advanced reasoning capabilities
        self.use_emotional_reasoning = use_emotional_reasoning
        self.use_perspective_threading = use_perspective_threading
        self.num_emotion_heads = num_emotion_heads
        self.num_thinking_stages = num_thinking_stages
        self.emotion_hidden_size = emotion_hidden_size
        self.perspective_threads = perspective_threads
        self.thinking_depth = thinking_depth
        self.structured_output_vocab_size = structured_output_vocab_size
        self.empathy_scaling_factor = empathy_scaling_factor
        self.reasoning_temperature = reasoning_temperature
        # Structured head architecture spec
        self.structured_head_type = structured_head_type
        self.structured_head_hidden_dim = structured_head_hidden_dim
        self.structured_head_activation = structured_head_activation
            # Speech head config
        self.use_speech_output = use_speech_output
        self.speech_num_mels = speech_num_mels
        self.speech_upsample_factor = speech_upsample_factor
        self.speech_loss_type = speech_loss_type
        self.speech_head_hidden_dim = speech_head_hidden_dim
            
        # Validate emotional reasoning parameters
        if self.use_emotional_reasoning and self.num_emotion_heads > self.num_attention_heads:
            raise ValueError(f"num_emotion_heads ({self.num_emotion_heads}) cannot exceed num_attention_heads ({self.num_attention_heads})")
        
        if self.use_perspective_threading and self.perspective_threads < 2:
            raise ValueError(f"perspective_threads ({self.perspective_threads}) must be at least 2 for meaningful threading")
        if self.use_speech_output:
            if not isinstance(self.speech_num_mels, int) or self.speech_num_mels <= 0:
                raise ValueError("speech_num_mels must be a positive integer")
            if not isinstance(self.speech_upsample_factor, int) or self.speech_upsample_factor <= 0:
                raise ValueError("speech_upsample_factor must be a positive integer")
            if self.speech_loss_type not in {"l1", "mse"}:
                raise ValueError("speech_loss_type must be one of {'l1','mse'}")
            if self.speech_head_hidden_dim is not None:
                if not isinstance(self.speech_head_hidden_dim, int) or self.speech_head_hidden_dim <= 0:
                    raise ValueError("speech_head_hidden_dim must be a positive integer when provided")
            
        # Validate the correctness of rotary position embeddings parameters
        # BC: if there is a 'type' field, move it to 'rope_type'.
        if self.rope_scaling is not None and "type" in self.rope_scaling:
            self.rope_scaling["rope_type"] = self.rope_scaling["type"]
        rope_config_validation(self)

        self.layer_types = layer_types
        if self.layer_types is None:
            self.layer_types = [
                "sliding_attention"
                if self.sliding_window is not None and i >= self.max_window_layers
                else "full_attention"
                for i in range(self.num_hidden_layers)
            ]
        layer_type_validation(self.layer_types)

        super().__init__(
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )


__all__ = ["HelpingAIConfig"]