hai3.1-checkpoint-0002 / configuration_helpingai.py
Abhaykoul's picture
Upload folder using huggingface_hub
2285286 verified
raw
history blame
19.3 kB
from transformers.configuration_utils import PretrainedConfig
class HelpingAIConfig(PretrainedConfig):
model_type = "helpingai"
def __init__(
self,
vocab_size=50257,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
max_position_embeddings=2048,
layer_norm_epsilon=1e-5,
hidden_act="gelu",
dropout=0.0,
attention_dropout=0.0,
tie_word_embeddings=True,
# Structured output head
use_structured_output=True,
structured_output_vocab_size=2,
# Speech head
use_speech_output=False,
speech_num_mels=80,
speech_head_hidden_dim=1024,
speech_upsample_factor=1,
speech_loss_type="l1",
# Misc
initializer_range=0.02,
**kwargs,
):
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.layer_norm_epsilon = layer_norm_epsilon
self.hidden_act = hidden_act
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
# Structured
self.use_structured_output = use_structured_output
self.structured_output_vocab_size = structured_output_vocab_size
# Speech
self.use_speech_output = use_speech_output
self.speech_num_mels = speech_num_mels
self.speech_head_hidden_dim = speech_head_hidden_dim
self.speech_upsample_factor = speech_upsample_factor
self.speech_loss_type = speech_loss_type
"""HelpingAI model configuration"""
from transformers.configuration_utils import PretrainedConfig, layer_type_validation
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging
logger = logging.get_logger(__name__)
class HelpingAIConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`HelpingAIModel`]. It is used to instantiate a
HelpingAI model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
HelpingAI-8B [HelpingAI/HelpingAI-8B](https://huggingface.co/HelpingAI/HelpingAI-8B).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the HelpingAI model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`HelpingAIModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22016):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
head_dim (`int`, *optional*, defaults to 128):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any
additional layer afterwards will use SWA (Sliding Window Attention).
layer_types (`list`, *optional*):
Attention pattern for each layer.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
use_emotional_reasoning (`bool`, *optional*, defaults to `True`):
Whether to enable Semantic Emotion Reasoning (SER) capabilities for emotional understanding and processing.
use_perspective_threading (`bool`, *optional*, defaults to `True`):
Whether to enable Perspective Emotion Threading (PET) for multi-threaded emotional reasoning.
num_emotion_heads (`int`, *optional*, defaults to 4):
Number of specialized attention heads dedicated to emotional processing and reasoning.
num_thinking_stages (`int`, *optional*, defaults to 3):
Number of thinking stages for multi-stage reasoning and reflection processing.
emotion_hidden_size (`int`, *optional*, defaults to 512):
Hidden size for the emotional reasoning layers and SER processing modules.
perspective_threads (`int`, *optional*, defaults to 4):
Number of parallel perspective threads for PET processing (relatable, supportive, motivational, analytical).
thinking_depth (`int`, *optional*, defaults to 2):
Depth of thinking layers for internal reasoning and reflection processes.
structured_output_vocab_size (`int`, *optional*, defaults to 100):
Additional vocabulary size for structured output tokens like <think>, <ser>, <pet>, etc.
empathy_scaling_factor (`float`, *optional*, defaults to 1.2):
Scaling factor for empathy-related attention weights and emotional processing.
reasoning_temperature (`float`, *optional*, defaults to 0.8):
Temperature parameter for reasoning and thinking processes to balance creativity and coherence.
use_speech_output (`bool`, *optional*, defaults to `False`):
Whether to enable an additional text-to-speech head that predicts mel-spectrogram frames from hidden states.
speech_num_mels (`int`, *optional*, defaults to `80`):
Number of mel bins to predict for the speech head.
speech_upsample_factor (`int`, *optional*, defaults to `1`):
Temporal upsampling factor to expand token-level hidden states to frame-level resolution by simple repetition.
speech_loss_type (`str`, *optional*, defaults to `"l1"`):
Loss for speech supervision. One of {"l1", "mse"}.
speech_head_hidden_dim (`int`, *optional*, defaults to `None`):
Hidden dimension for the speech head MLP (hidden_size -> speech_head_hidden_dim -> num_mels).
If None, defaults to hidden_size // 2. Increase to scale speech head params (e.g., ~9.6k for ~50M).
```python
>>> from transformers import HelpingAIModel, HelpingAIConfig
>>> # Initializing a HelpingAI style configuration with advanced reasoning
>>> configuration = HelpingAIConfig(
... use_emotional_reasoning=True,
... use_perspective_threading=True,
... num_emotion_heads=4,
... num_thinking_stages=3
... )
>>> # Initializing a model from the HelpingAI-8B style configuration
>>> model = HelpingAIModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "helpingai"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `HelpingAI`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8, # Match num_attention_heads for compatibility
head_dim=128,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
layer_types=None,
attention_dropout=0.0,
# Advanced reasoning parameters
use_emotional_reasoning=False, # Disable by default for now
use_perspective_threading=True,
num_emotion_heads=4,
num_thinking_stages=3,
emotion_hidden_size=512,
perspective_threads=4,
thinking_depth=2,
structured_output_vocab_size=100,
empathy_scaling_factor=1.2,
reasoning_temperature=0.8,
# Structured head architecture (new)
structured_head_type: str = "linear", # one of: linear, mlp_v1
structured_head_hidden_dim: int | None = None,
structured_head_activation: str = "gelu", # gelu or relu
# Speech output head options
use_speech_output=False,
speech_num_mels=80,
speech_upsample_factor=1,
speech_loss_type="l1",
speech_head_hidden_dim=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if self.use_sliding_window else None
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = head_dim
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
# Advanced reasoning capabilities
self.use_emotional_reasoning = use_emotional_reasoning
self.use_perspective_threading = use_perspective_threading
self.num_emotion_heads = num_emotion_heads
self.num_thinking_stages = num_thinking_stages
self.emotion_hidden_size = emotion_hidden_size
self.perspective_threads = perspective_threads
self.thinking_depth = thinking_depth
self.structured_output_vocab_size = structured_output_vocab_size
self.empathy_scaling_factor = empathy_scaling_factor
self.reasoning_temperature = reasoning_temperature
# Structured head architecture spec
self.structured_head_type = structured_head_type
self.structured_head_hidden_dim = structured_head_hidden_dim
self.structured_head_activation = structured_head_activation
# Speech head config
self.use_speech_output = use_speech_output
self.speech_num_mels = speech_num_mels
self.speech_upsample_factor = speech_upsample_factor
self.speech_loss_type = speech_loss_type
self.speech_head_hidden_dim = speech_head_hidden_dim
# Validate emotional reasoning parameters
if self.use_emotional_reasoning and self.num_emotion_heads > self.num_attention_heads:
raise ValueError(f"num_emotion_heads ({self.num_emotion_heads}) cannot exceed num_attention_heads ({self.num_attention_heads})")
if self.use_perspective_threading and self.perspective_threads < 2:
raise ValueError(f"perspective_threads ({self.perspective_threads}) must be at least 2 for meaningful threading")
if self.use_speech_output:
if not isinstance(self.speech_num_mels, int) or self.speech_num_mels <= 0:
raise ValueError("speech_num_mels must be a positive integer")
if not isinstance(self.speech_upsample_factor, int) or self.speech_upsample_factor <= 0:
raise ValueError("speech_upsample_factor must be a positive integer")
if self.speech_loss_type not in {"l1", "mse"}:
raise ValueError("speech_loss_type must be one of {'l1','mse'}")
if self.speech_head_hidden_dim is not None:
if not isinstance(self.speech_head_hidden_dim, int) or self.speech_head_hidden_dim <= 0:
raise ValueError("speech_head_hidden_dim must be a positive integer when provided")
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
self.layer_types = layer_types
if self.layer_types is None:
self.layer_types = [
"sliding_attention"
if self.sliding_window is not None and i >= self.max_window_layers
else "full_attention"
for i in range(self.num_hidden_layers)
]
layer_type_validation(self.layer_types)
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["HelpingAIConfig"]