Abhaykoul commited on
Commit
a914ade
·
verified ·
1 Parent(s): 2285286

Upload README (2).md

Browse files
Files changed (1) hide show
  1. README (2).md +86 -0
README (2).md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ library_name: transformers
5
+ ---
6
+ CURRENTLY IN TRAINING :)
7
+
8
+ Currently, only the LLM section of this model is fully ready.
9
+ ```py
10
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
11
+ import torch
12
+
13
+ # Load model and tokenizer
14
+ model_name = "Abhaykoul/hai3.1-pretrainedv3"
15
+
16
+ # Set device to CUDA if available
17
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
18
+
19
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype="auto")
20
+ model.to(device)
21
+ print(model)
22
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
23
+
24
+ # Message role format for chat
25
+ messages = [
26
+ {"role": "system", "content": "You are a helpful assistant."},
27
+ {"role": "user", "content": """hlo"""},
28
+ ]
29
+
30
+ # Apply chat template to format prompt
31
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
32
+
33
+ # Tokenize input and move to device
34
+ inputs = tokenizer(prompt, return_tensors="pt")
35
+ inputs = {k: v.to(device) for k, v in inputs.items()}
36
+
37
+ # Set up text streamer for live output
38
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
39
+
40
+ # Generate text with streaming
41
+ model.generate(
42
+ **inputs,
43
+ max_new_tokens=4089,
44
+ temperature=0.7,
45
+ top_p=0.9,
46
+ do_sample=True,
47
+ streamer=streamer
48
+ )
49
+ ```
50
+ Classfication section undertraining
51
+ ```py
52
+ import torch
53
+ from transformers import AutoModelForCausalLM, AutoTokenizer
54
+
55
+ ckpt = "Abhaykoul/hai3.1-pretrainedv3"
56
+ device = "cuda" if torch.cuda.is_available() else "cpu"
57
+
58
+ model = AutoModelForCausalLM.from_pretrained(ckpt, trust_remote_code=True).to(device).eval()
59
+ tok = AutoTokenizer.from_pretrained(ckpt, trust_remote_code=True)
60
+ if tok.pad_token is None:
61
+ tok.pad_token = tok.eos_token
62
+
63
+ text = "I am thrilled about my new job!"
64
+ enc = tok([text], padding=True, truncation=True, max_length=2048, return_tensors="pt")
65
+ enc = {k: v.to(device) for k, v in enc.items()}
66
+
67
+ with torch.no_grad():
68
+ out = model(input_ids=enc["input_ids"], attention_mask=enc.get("attention_mask"), output_hidden_states=True, return_dict=True, use_cache=False)
69
+ last = out.hidden_states[-1]
70
+ idx = (enc["attention_mask"].sum(dim=1) - 1).clamp(min=0)
71
+ pooled = last[torch.arange(last.size(0)), idx]
72
+ logits = model.structured_lm_head(pooled)
73
+ pred_id = logits.argmax(dim=-1).item()
74
+
75
+ print("Predicted class id:", pred_id)
76
+ # Map id -> label using your dataset’s label list, e.g.:
77
+ id2label = ["sadness","joy","love","anger","fear","surprise"] # dair-ai/emotion
78
+ print("Predicted label:", id2label[pred_id] if pred_id < len(id2label) else "unknown")
79
+ ```
80
+
81
+ TTS layers in training
82
+
83
+ NOTE: we have used qwen2 tokenizer in it
84
+
85
+ This model contains layers from our diffrent models
86
+ To aline layers we have done post training after merging layers