--- base_model: FacebookAI/xlm-roberta-large library_name: peft license: mit metrics: - accuracy - precision - recall tags: - generated_from_trainer model-index: - name: emotion_classification_fr results: [] --- # emotion_classification_fr This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5239 - Accuracy: 0.815 - Precision: 0.8165 - Recall: 0.815 - F1-score: 0.8152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1-score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 0.6944 | 1.0 | 1000 | 0.6852 | 0.76 | 0.7601 | 0.76 | 0.7584 | | 0.7167 | 2.0 | 2000 | 0.5862 | 0.798 | 0.8032 | 0.798 | 0.7994 | | 0.5138 | 3.0 | 3000 | 0.5239 | 0.815 | 0.8165 | 0.815 | 0.8152 | ### Framework versions - PEFT 0.13.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1