HolySaint commited on
Commit
ad715cd
·
1 Parent(s): 39c2ec6

Added the completed unit 1 for the DeepRL course

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: MLPpolicy
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 281.66 +/- 13.16
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **MLPpolicy** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **MLPpolicy** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f237e681900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f237e681990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f237e681a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f237e681ab0>", "_build": "<function ActorCriticPolicy._build at 0x7f237e681b40>", "forward": "<function ActorCriticPolicy.forward at 0x7f237e681bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f237e681c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f237e681cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f237e681d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f237e681e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f237e681ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f237e681f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f237e67bb00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679395814800006343, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWFNZFDZ2cECUhpRSlIwBbJRNIQGMAXSUR0CiGg6yrxRVdX2UKGgGaAloD0MIorPMIpTebkCUhpRSlGgVTS4BaBZHQKIaDqUNayN1fZQoaAZoCWgPQwgQlrGhm1RwQJSGlFKUaBVNHgFoFkdAohom0svqT3V9lChoBmgJaA9DCCiBzTl4IHJAlIaUUpRoFU0qAWgWR0CiGm8n3L3cdX2UKGgGaAloD0MIECOER5tUcUCUhpRSlGgVTU8BaBZHQKIakhbnoxJ1fZQoaAZoCWgPQwhGCmXh649vQJSGlFKUaBVNUQFoFkdAohrPktEofHV9lChoBmgJaA9DCN4DdF/O2nJAlIaUUpRoFU0oAWgWR0CiG1h7VrhzdX2UKGgGaAloD0MI2sh1U8pgcUCUhpRSlGgVTSwBaBZHQKIbrCuU2UB1fZQoaAZoCWgPQwgdsKvJUwtyQJSGlFKUaBVNAAFoFkdAohurcqOLi3V9lChoBmgJaA9DCMLdWbttIG9AlIaUUpRoFU05AWgWR0CiG/yLZSNwdX2UKGgGaAloD0MI7IZtizKObUCUhpRSlGgVTQoBaBZHQKIb/kUbkwN1fZQoaAZoCWgPQwgmAP+UqopwQJSGlFKUaBVNlgFoFkdAohwdG3F1jnV9lChoBmgJaA9DCC6PNSNDtHBAlIaUUpRoFU1wAWgWR0CiHE7kXDWLdX2UKGgGaAloD0MIdOrKZ3m9cUCUhpRSlGgVTSwBaBZHQKIchiWmgrZ1fZQoaAZoCWgPQwgbZ9MRwDtyQJSGlFKUaBVL3mgWR0CiHIwTmGM5dX2UKGgGaAloD0MIjBAebZzYckCUhpRSlGgVTQABaBZHQKIczbnHNot1fZQoaAZoCWgPQwjAJQD/lAxxQJSGlFKUaBVNDQFoFkdAohzqw+t8u3V9lChoBmgJaA9DCLGoiNNJijJAlIaUUpRoFUvEaBZHQKIc+h+vyLB1fZQoaAZoCWgPQwjooiHjUUNtQJSGlFKUaBVNFAFoFkdAoh0vSa3I/HV9lChoBmgJaA9DCAubAS7IE3FAlIaUUpRoFUv9aBZHQKIdWRmseXB1fZQoaAZoCWgPQwgyOEpe3XZwQJSGlFKUaBVNLAFoFkdAoh21KsdT53V9lChoBmgJaA9DCDzdeeI5xm9AlIaUUpRoFU1jAWgWR0CiHe9eY2KmdX2UKGgGaAloD0MIzjP2JZsdcECUhpRSlGgVS/NoFkdAoh5HVd5Y5nV9lChoBmgJaA9DCKCM8WF2Xm9AlIaUUpRoFUv+aBZHQKIeaHQhOgx1fZQoaAZoCWgPQwiqRUQxubxyQJSGlFKUaBVL52gWR0CiHnQAU+LWdX2UKGgGaAloD0MIeqnYmFeabkCUhpRSlGgVTR8BaBZHQKIeeYWLxZx1fZQoaAZoCWgPQwicMjffCF1wQJSGlFKUaBVL8mgWR0CiHqvy9VWCdX2UKGgGaAloD0MI6rRug9qpckCUhpRSlGgVTRABaBZHQKIfL+XqqwR1fZQoaAZoCWgPQwhslWBxuGhxQJSGlFKUaBVL/GgWR0CiHzgNwzcidX2UKGgGaAloD0MIJTyh118vc0CUhpRSlGgVS+poFkdAoh9NBWxQi3V9lChoBmgJaA9DCD0NGCQ9C3JAlIaUUpRoFU1RAWgWR0CiH5JtBOYZdX2UKGgGaAloD0MIxEFClG/HcUCUhpRSlGgVS/hoFkdAoh+g+GGmDXV9lChoBmgJaA9DCGzu6H+5PnJAlIaUUpRoFU0pAWgWR0CiH64fOlfrdX2UKGgGaAloD0MIij+KOnOcbUCUhpRSlGgVS+xoFkdAoh+2A3DNyHV9lChoBmgJaA9DCJM4K6KmrHJAlIaUUpRoFUvmaBZHQKIgJOsT37F1fZQoaAZoCWgPQwiQn41cN4dyQJSGlFKUaBVNVAFoFkdAoiCGWMS9NHV9lChoBmgJaA9DCJSGGoWkAXBAlIaUUpRoFUv2aBZHQKIgj4B3iaR1fZQoaAZoCWgPQwjBxB9F3YJwQJSGlFKUaBVL9WgWR0CiIOMtsenydX2UKGgGaAloD0MICJChY0eFckCUhpRSlGgVS/FoFkdAoiEEdcSoO3V9lChoBmgJaA9DCKX2ItpO6HJAlIaUUpRoFUv2aBZHQKIhGH0K7Zp1fZQoaAZoCWgPQwh3vwrwnc9wQJSGlFKUaBVNXgFoFkdAoiEc0gr6L3V9lChoBmgJaA9DCNnO91MjWHJAlIaUUpRoFUv0aBZHQKIqmukk8ih1fZQoaAZoCWgPQwh07+GSI/1yQJSGlFKUaBVL+WgWR0CiK0ZVn27GdX2UKGgGaAloD0MIdGIP7eNscECUhpRSlGgVTVEBaBZHQKIrUOlO45N1fZQoaAZoCWgPQwjTiJl93ipxQJSGlFKUaBVNEgFoFkdAoit33i704HV9lChoBmgJaA9DCDc4Ef1a7G5AlIaUUpRoFUv4aBZHQKIrmSf16E91fZQoaAZoCWgPQwjAIOnTashwQJSGlFKUaBVL72gWR0CiK5fzSThYdX2UKGgGaAloD0MIOGivPl6pcUCUhpRSlGgVTSwBaBZHQKIrtgaWHDd1fZQoaAZoCWgPQwjPnzaqUw1zQJSGlFKUaBVNEgFoFkdAoivL349HMHV9lChoBmgJaA9DCFQ57Sm5I3BAlIaUUpRoFU0eAWgWR0CiLAJ0wJw9dX2UKGgGaAloD0MITn6LTtYpcUCUhpRSlGgVTRABaBZHQKIsVllK9PF1fZQoaAZoCWgPQwgOSphp+71vQJSGlFKUaBVL82gWR0CiLGIdlum8dX2UKGgGaAloD0MIkuumlNdvb0CUhpRSlGgVTQgBaBZHQKIsnPj4pMJ1fZQoaAZoCWgPQwgL1GLwsG1xQJSGlFKUaBVL2WgWR0CiLKHerMkhdX2UKGgGaAloD0MIuarsu2I6cUCUhpRSlGgVS/RoFkdAoizMHUtqYnV9lChoBmgJaA9DCFaBWgyeH29AlIaUUpRoFU0nAWgWR0CiLS+nqFAWdX2UKGgGaAloD0MIV+4FZsUWckCUhpRSlGgVTRgBaBZHQKItaWDYh+x1fZQoaAZoCWgPQwizYOKPYsJxQJSGlFKUaBVL3mgWR0CiLc3BpHqedX2UKGgGaAloD0MIW11OCcgMc0CUhpRSlGgVS+hoFkdAoi3sI/qxDHV9lChoBmgJaA9DCPoJZ7fWr3JAlIaUUpRoFU0dAWgWR0CiLjAwGnn/dX2UKGgGaAloD0MIrJFdadldcECUhpRSlGgVS/ZoFkdAoi41o6CDmXV9lChoBmgJaA9DCGjsSzYeVnJAlIaUUpRoFU0dAWgWR0CiLjoW56MSdX2UKGgGaAloD0MII74Tsx6NckCUhpRSlGgVTRQBaBZHQKIuR1EmY0F1fZQoaAZoCWgPQwjHKqVneptuQJSGlFKUaBVL+GgWR0CiLotY0VJudX2UKGgGaAloD0MIKO54k998cECUhpRSlGgVTRYBaBZHQKIunwNLDht1fZQoaAZoCWgPQwhE3nL14/lxQJSGlFKUaBVL5mgWR0CiLr6AOJ+EdX2UKGgGaAloD0MIYI+JlCbEcECUhpRSlGgVS9RoFkdAoi7NKf4AS3V9lChoBmgJaA9DCJ/MP/omlW9AlIaUUpRoFUv3aBZHQKIu23m3fAN1fZQoaAZoCWgPQwjqP2t+fPRtQJSGlFKUaBVL9GgWR0CiL0q4H5aedX2UKGgGaAloD0MII9kj1Ew5cUCUhpRSlGgVTQoBaBZHQKIvU5jH4oJ1fZQoaAZoCWgPQwiifazgd3dwQJSGlFKUaBVL+2gWR0CiL8HJT2nLdX2UKGgGaAloD0MIhh3GpP9wcECUhpRSlGgVTUYCaBZHQKIwW0cfeUJ1fZQoaAZoCWgPQwhMGM3K9plxQJSGlFKUaBVL+WgWR0CiMHkkrwvydX2UKGgGaAloD0MI/TIYI5JrckCUhpRSlGgVTRIBaBZHQKIwownH/951fZQoaAZoCWgPQwhJSQ9Da/lyQJSGlFKUaBVL8GgWR0CiMKNDUmUodX2UKGgGaAloD0MIueF3063TcUCUhpRSlGgVS+toFkdAojCtTNt65XV9lChoBmgJaA9DCMpwPJ8BJ3JAlIaUUpRoFU1GAWgWR0CiMNBppN9IdX2UKGgGaAloD0MIAg6hSo2scECUhpRSlGgVS+ZoFkdAojDl0A93bHV9lChoBmgJaA9DCHhDGhX4uHBAlIaUUpRoFU0VAWgWR0CiMQb8ejmCdX2UKGgGaAloD0MI51Wd1cKJckCUhpRSlGgVTRIBaBZHQKIxbGAkLQZ1fZQoaAZoCWgPQwinIarwZy1uQJSGlFKUaBVNOwFoFkdAojFw8QqZt3V9lChoBmgJaA9DCA1wQbYsN3FAlIaUUpRoFU0MAWgWR0CiMX6lchTwdX2UKGgGaAloD0MIR60wfe8lcUCUhpRSlGgVTSEBaBZHQKIx065oXbd1fZQoaAZoCWgPQwg4glSKHf1yQJSGlFKUaBVL+2gWR0CiMekETxoadX2UKGgGaAloD0MIy6Da4IQ/ckCUhpRSlGgVTUYBaBZHQKIyH+irT6V1fZQoaAZoCWgPQwgceouH9+RxQJSGlFKUaBVL+WgWR0CiMleGfwqidX2UKGgGaAloD0MIT+s2qH0ycUCUhpRSlGgVTWABaBZHQKIy/hy8zyl1fZQoaAZoCWgPQwg4nzpWaQhyQJSGlFKUaBVL4mgWR0CiMzwYDTz/dX2UKGgGaAloD0MIObh0zDnFcUCUhpRSlGgVTQcBaBZHQKIzaDJU5uJ1fZQoaAZoCWgPQwhWgsXhDNRxQJSGlFKUaBVL/GgWR0CiM2/S6UaAdX2UKGgGaAloD0MIPUM4Ztk3O0CUhpRSlGgVS9VoFkdAojOp8D0UXnV9lChoBmgJaA9DCL+6KlALiW1AlIaUUpRoFU06AWgWR0CiM6hwEQoTdX2UKGgGaAloD0MIFf93RMUfckCUhpRSlGgVTTkBaBZHQKIz5yzXz191fZQoaAZoCWgPQwjDDmPSX8VyQJSGlFKUaBVNTAFoFkdAojPzdcjZ+XV9lChoBmgJaA9DCM+ey9QkfXJAlIaUUpRoFU1AAWgWR0CiM/lyzXz2dX2UKGgGaAloD0MI3h0Zq02McUCUhpRSlGgVS/loFkdAojQX+KjzqnV9lChoBmgJaA9DCK7WicvxfXFAlIaUUpRoFU0AAWgWR0CiNBv/aQFLdX2UKGgGaAloD0MIv2TjwVaUcECUhpRSlGgVTSABaBZHQKI00vvBrN51fZQoaAZoCWgPQwibcRqiinlxQJSGlFKUaBVNCAFoFkdAojTmCuloDnV9lChoBmgJaA9DCE5DVOFP+G1AlIaUUpRoFU0fAWgWR0CiNOegDifhdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-67-generic-x86_64-with-glibc2.31 # 74~20.04.1-Ubuntu SMP Wed Feb 22 14:52:34 UTC 2023", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6be8e62e8e50233b1d0485f831ef0784f1b9e16eb100a75a86dca9207e2f8c3
3
+ size 146738
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f237e681900>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f237e681990>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f237e681a20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f237e681ab0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f237e681b40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f237e681bd0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f237e681c60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f237e681cf0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f237e681d80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f237e681e10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f237e681ea0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f237e681f30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f237e67bb00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000.0,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1679395814800006343,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": null,
59
+ "_last_episode_starts": {
60
+ ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
62
+ },
63
+ "_last_original_obs": null,
64
+ "_episode_num": 0,
65
+ "use_sde": false,
66
+ "sde_sample_freq": -1,
67
+ "_current_progress_remaining": -0.015808000000000044,
68
+ "ep_info_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVVxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWFNZFDZ2cECUhpRSlIwBbJRNIQGMAXSUR0CiGg6yrxRVdX2UKGgGaAloD0MIorPMIpTebkCUhpRSlGgVTS4BaBZHQKIaDqUNayN1fZQoaAZoCWgPQwgQlrGhm1RwQJSGlFKUaBVNHgFoFkdAohom0svqT3V9lChoBmgJaA9DCCiBzTl4IHJAlIaUUpRoFU0qAWgWR0CiGm8n3L3cdX2UKGgGaAloD0MIECOER5tUcUCUhpRSlGgVTU8BaBZHQKIakhbnoxJ1fZQoaAZoCWgPQwhGCmXh649vQJSGlFKUaBVNUQFoFkdAohrPktEofHV9lChoBmgJaA9DCN4DdF/O2nJAlIaUUpRoFU0oAWgWR0CiG1h7VrhzdX2UKGgGaAloD0MI2sh1U8pgcUCUhpRSlGgVTSwBaBZHQKIbrCuU2UB1fZQoaAZoCWgPQwgdsKvJUwtyQJSGlFKUaBVNAAFoFkdAohurcqOLi3V9lChoBmgJaA9DCMLdWbttIG9AlIaUUpRoFU05AWgWR0CiG/yLZSNwdX2UKGgGaAloD0MI7IZtizKObUCUhpRSlGgVTQoBaBZHQKIb/kUbkwN1fZQoaAZoCWgPQwgmAP+UqopwQJSGlFKUaBVNlgFoFkdAohwdG3F1jnV9lChoBmgJaA9DCC6PNSNDtHBAlIaUUpRoFU1wAWgWR0CiHE7kXDWLdX2UKGgGaAloD0MIdOrKZ3m9cUCUhpRSlGgVTSwBaBZHQKIchiWmgrZ1fZQoaAZoCWgPQwgbZ9MRwDtyQJSGlFKUaBVL3mgWR0CiHIwTmGM5dX2UKGgGaAloD0MIjBAebZzYckCUhpRSlGgVTQABaBZHQKIczbnHNot1fZQoaAZoCWgPQwjAJQD/lAxxQJSGlFKUaBVNDQFoFkdAohzqw+t8u3V9lChoBmgJaA9DCLGoiNNJijJAlIaUUpRoFUvEaBZHQKIc+h+vyLB1fZQoaAZoCWgPQwjooiHjUUNtQJSGlFKUaBVNFAFoFkdAoh0vSa3I/HV9lChoBmgJaA9DCAubAS7IE3FAlIaUUpRoFUv9aBZHQKIdWRmseXB1fZQoaAZoCWgPQwgyOEpe3XZwQJSGlFKUaBVNLAFoFkdAoh21KsdT53V9lChoBmgJaA9DCDzdeeI5xm9AlIaUUpRoFU1jAWgWR0CiHe9eY2KmdX2UKGgGaAloD0MIzjP2JZsdcECUhpRSlGgVS/NoFkdAoh5HVd5Y5nV9lChoBmgJaA9DCKCM8WF2Xm9AlIaUUpRoFUv+aBZHQKIeaHQhOgx1fZQoaAZoCWgPQwiqRUQxubxyQJSGlFKUaBVL52gWR0CiHnQAU+LWdX2UKGgGaAloD0MIeqnYmFeabkCUhpRSlGgVTR8BaBZHQKIeeYWLxZx1fZQoaAZoCWgPQwicMjffCF1wQJSGlFKUaBVL8mgWR0CiHqvy9VWCdX2UKGgGaAloD0MI6rRug9qpckCUhpRSlGgVTRABaBZHQKIfL+XqqwR1fZQoaAZoCWgPQwhslWBxuGhxQJSGlFKUaBVL/GgWR0CiHzgNwzcidX2UKGgGaAloD0MIJTyh118vc0CUhpRSlGgVS+poFkdAoh9NBWxQi3V9lChoBmgJaA9DCD0NGCQ9C3JAlIaUUpRoFU1RAWgWR0CiH5JtBOYZdX2UKGgGaAloD0MIxEFClG/HcUCUhpRSlGgVS/hoFkdAoh+g+GGmDXV9lChoBmgJaA9DCGzu6H+5PnJAlIaUUpRoFU0pAWgWR0CiH64fOlfrdX2UKGgGaAloD0MIij+KOnOcbUCUhpRSlGgVS+xoFkdAoh+2A3DNyHV9lChoBmgJaA9DCJM4K6KmrHJAlIaUUpRoFUvmaBZHQKIgJOsT37F1fZQoaAZoCWgPQwiQn41cN4dyQJSGlFKUaBVNVAFoFkdAoiCGWMS9NHV9lChoBmgJaA9DCJSGGoWkAXBAlIaUUpRoFUv2aBZHQKIgj4B3iaR1fZQoaAZoCWgPQwjBxB9F3YJwQJSGlFKUaBVL9WgWR0CiIOMtsenydX2UKGgGaAloD0MICJChY0eFckCUhpRSlGgVS/FoFkdAoiEEdcSoO3V9lChoBmgJaA9DCKX2ItpO6HJAlIaUUpRoFUv2aBZHQKIhGH0K7Zp1fZQoaAZoCWgPQwh3vwrwnc9wQJSGlFKUaBVNXgFoFkdAoiEc0gr6L3V9lChoBmgJaA9DCNnO91MjWHJAlIaUUpRoFUv0aBZHQKIqmukk8ih1fZQoaAZoCWgPQwh07+GSI/1yQJSGlFKUaBVL+WgWR0CiK0ZVn27GdX2UKGgGaAloD0MIdGIP7eNscECUhpRSlGgVTVEBaBZHQKIrUOlO45N1fZQoaAZoCWgPQwjTiJl93ipxQJSGlFKUaBVNEgFoFkdAoit33i704HV9lChoBmgJaA9DCDc4Ef1a7G5AlIaUUpRoFUv4aBZHQKIrmSf16E91fZQoaAZoCWgPQwjAIOnTashwQJSGlFKUaBVL72gWR0CiK5fzSThYdX2UKGgGaAloD0MIOGivPl6pcUCUhpRSlGgVTSwBaBZHQKIrtgaWHDd1fZQoaAZoCWgPQwjPnzaqUw1zQJSGlFKUaBVNEgFoFkdAoivL349HMHV9lChoBmgJaA9DCFQ57Sm5I3BAlIaUUpRoFU0eAWgWR0CiLAJ0wJw9dX2UKGgGaAloD0MITn6LTtYpcUCUhpRSlGgVTRABaBZHQKIsVllK9PF1fZQoaAZoCWgPQwgOSphp+71vQJSGlFKUaBVL82gWR0CiLGIdlum8dX2UKGgGaAloD0MIkuumlNdvb0CUhpRSlGgVTQgBaBZHQKIsnPj4pMJ1fZQoaAZoCWgPQwgL1GLwsG1xQJSGlFKUaBVL2WgWR0CiLKHerMkhdX2UKGgGaAloD0MIuarsu2I6cUCUhpRSlGgVS/RoFkdAoizMHUtqYnV9lChoBmgJaA9DCFaBWgyeH29AlIaUUpRoFU0nAWgWR0CiLS+nqFAWdX2UKGgGaAloD0MIV+4FZsUWckCUhpRSlGgVTRgBaBZHQKItaWDYh+x1fZQoaAZoCWgPQwizYOKPYsJxQJSGlFKUaBVL3mgWR0CiLc3BpHqedX2UKGgGaAloD0MIW11OCcgMc0CUhpRSlGgVS+hoFkdAoi3sI/qxDHV9lChoBmgJaA9DCPoJZ7fWr3JAlIaUUpRoFU0dAWgWR0CiLjAwGnn/dX2UKGgGaAloD0MIrJFdadldcECUhpRSlGgVS/ZoFkdAoi41o6CDmXV9lChoBmgJaA9DCGjsSzYeVnJAlIaUUpRoFU0dAWgWR0CiLjoW56MSdX2UKGgGaAloD0MII74Tsx6NckCUhpRSlGgVTRQBaBZHQKIuR1EmY0F1fZQoaAZoCWgPQwjHKqVneptuQJSGlFKUaBVL+GgWR0CiLotY0VJudX2UKGgGaAloD0MIKO54k998cECUhpRSlGgVTRYBaBZHQKIunwNLDht1fZQoaAZoCWgPQwhE3nL14/lxQJSGlFKUaBVL5mgWR0CiLr6AOJ+EdX2UKGgGaAloD0MIYI+JlCbEcECUhpRSlGgVS9RoFkdAoi7NKf4AS3V9lChoBmgJaA9DCJ/MP/omlW9AlIaUUpRoFUv3aBZHQKIu23m3fAN1fZQoaAZoCWgPQwjqP2t+fPRtQJSGlFKUaBVL9GgWR0CiL0q4H5aedX2UKGgGaAloD0MII9kj1Ew5cUCUhpRSlGgVTQoBaBZHQKIvU5jH4oJ1fZQoaAZoCWgPQwiifazgd3dwQJSGlFKUaBVL+2gWR0CiL8HJT2nLdX2UKGgGaAloD0MIhh3GpP9wcECUhpRSlGgVTUYCaBZHQKIwW0cfeUJ1fZQoaAZoCWgPQwhMGM3K9plxQJSGlFKUaBVL+WgWR0CiMHkkrwvydX2UKGgGaAloD0MI/TIYI5JrckCUhpRSlGgVTRIBaBZHQKIwownH/951fZQoaAZoCWgPQwhJSQ9Da/lyQJSGlFKUaBVL8GgWR0CiMKNDUmUodX2UKGgGaAloD0MIueF3063TcUCUhpRSlGgVS+toFkdAojCtTNt65XV9lChoBmgJaA9DCMpwPJ8BJ3JAlIaUUpRoFU1GAWgWR0CiMNBppN9IdX2UKGgGaAloD0MIAg6hSo2scECUhpRSlGgVS+ZoFkdAojDl0A93bHV9lChoBmgJaA9DCHhDGhX4uHBAlIaUUpRoFU0VAWgWR0CiMQb8ejmCdX2UKGgGaAloD0MI51Wd1cKJckCUhpRSlGgVTRIBaBZHQKIxbGAkLQZ1fZQoaAZoCWgPQwinIarwZy1uQJSGlFKUaBVNOwFoFkdAojFw8QqZt3V9lChoBmgJaA9DCA1wQbYsN3FAlIaUUpRoFU0MAWgWR0CiMX6lchTwdX2UKGgGaAloD0MIR60wfe8lcUCUhpRSlGgVTSEBaBZHQKIx065oXbd1fZQoaAZoCWgPQwg4glSKHf1yQJSGlFKUaBVL+2gWR0CiMekETxoadX2UKGgGaAloD0MIy6Da4IQ/ckCUhpRSlGgVTUYBaBZHQKIyH+irT6V1fZQoaAZoCWgPQwgceouH9+RxQJSGlFKUaBVL+WgWR0CiMleGfwqidX2UKGgGaAloD0MIT+s2qH0ycUCUhpRSlGgVTWABaBZHQKIy/hy8zyl1fZQoaAZoCWgPQwg4nzpWaQhyQJSGlFKUaBVL4mgWR0CiMzwYDTz/dX2UKGgGaAloD0MIObh0zDnFcUCUhpRSlGgVTQcBaBZHQKIzaDJU5uJ1fZQoaAZoCWgPQwhWgsXhDNRxQJSGlFKUaBVL/GgWR0CiM2/S6UaAdX2UKGgGaAloD0MIPUM4Ztk3O0CUhpRSlGgVS9VoFkdAojOp8D0UXnV9lChoBmgJaA9DCL+6KlALiW1AlIaUUpRoFU06AWgWR0CiM6hwEQoTdX2UKGgGaAloD0MIFf93RMUfckCUhpRSlGgVTTkBaBZHQKIz5yzXz191fZQoaAZoCWgPQwjDDmPSX8VyQJSGlFKUaBVNTAFoFkdAojPzdcjZ+XV9lChoBmgJaA9DCM+ey9QkfXJAlIaUUpRoFU1AAWgWR0CiM/lyzXz2dX2UKGgGaAloD0MI3h0Zq02McUCUhpRSlGgVS/loFkdAojQX+KjzqnV9lChoBmgJaA9DCK7WicvxfXFAlIaUUpRoFU0AAWgWR0CiNBv/aQFLdX2UKGgGaAloD0MIv2TjwVaUcECUhpRSlGgVTSABaBZHQKI00vvBrN51fZQoaAZoCWgPQwibcRqiinlxQJSGlFKUaBVNCAFoFkdAojTmCuloDnV9lChoBmgJaA9DCE5DVOFP+G1AlIaUUpRoFU0fAWgWR0CiNOegDifhdWUu"
71
+ },
72
+ "ep_success_buffer": {
73
+ ":type:": "<class 'collections.deque'>",
74
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
75
+ },
76
+ "_n_updates": 248,
77
+ "n_steps": 1024,
78
+ "gamma": 0.999,
79
+ "gae_lambda": 0.98,
80
+ "ent_coef": 0.01,
81
+ "vf_coef": 0.5,
82
+ "max_grad_norm": 0.5,
83
+ "batch_size": 64,
84
+ "n_epochs": 4,
85
+ "clip_range": {
86
+ ":type:": "<class 'function'>",
87
+ ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
88
+ },
89
+ "clip_range_vf": null,
90
+ "normalize_advantage": true,
91
+ "target_kl": null
92
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad2d143169e77f351ec871e31298c2fff463076846c0f70a983568e5a8c6526c
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00b0f1afb032e7a7e3eec9aa07b0c563168e4ad16d787e8d25d14d7052f0d019
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-67-generic-x86_64-with-glibc2.31 # 74~20.04.1-Ubuntu SMP Wed Feb 22 14:52:34 UTC 2023
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.2
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (233 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 281.6574213193321, "std_reward": 13.162506782859785, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-21T14:46:09.363239"}