Added the completed unit 1 for the DeepRL course
Browse files- README.md +35 -1
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +92 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: MLPpolicy
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 281.66 +/- 13.16
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
+
|
24 |
+
# **MLPpolicy** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **MLPpolicy** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f237e681900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f237e681990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f237e681a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f237e681ab0>", "_build": "<function ActorCriticPolicy._build at 0x7f237e681b40>", "forward": "<function ActorCriticPolicy.forward at 0x7f237e681bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f237e681c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f237e681cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f237e681d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f237e681e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f237e681ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f237e681f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f237e67bb00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679395814800006343, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWFNZFDZ2cECUhpRSlIwBbJRNIQGMAXSUR0CiGg6yrxRVdX2UKGgGaAloD0MIorPMIpTebkCUhpRSlGgVTS4BaBZHQKIaDqUNayN1fZQoaAZoCWgPQwgQlrGhm1RwQJSGlFKUaBVNHgFoFkdAohom0svqT3V9lChoBmgJaA9DCCiBzTl4IHJAlIaUUpRoFU0qAWgWR0CiGm8n3L3cdX2UKGgGaAloD0MIECOER5tUcUCUhpRSlGgVTU8BaBZHQKIakhbnoxJ1fZQoaAZoCWgPQwhGCmXh649vQJSGlFKUaBVNUQFoFkdAohrPktEofHV9lChoBmgJaA9DCN4DdF/O2nJAlIaUUpRoFU0oAWgWR0CiG1h7VrhzdX2UKGgGaAloD0MI2sh1U8pgcUCUhpRSlGgVTSwBaBZHQKIbrCuU2UB1fZQoaAZoCWgPQwgdsKvJUwtyQJSGlFKUaBVNAAFoFkdAohurcqOLi3V9lChoBmgJaA9DCMLdWbttIG9AlIaUUpRoFU05AWgWR0CiG/yLZSNwdX2UKGgGaAloD0MI7IZtizKObUCUhpRSlGgVTQoBaBZHQKIb/kUbkwN1fZQoaAZoCWgPQwgmAP+UqopwQJSGlFKUaBVNlgFoFkdAohwdG3F1jnV9lChoBmgJaA9DCC6PNSNDtHBAlIaUUpRoFU1wAWgWR0CiHE7kXDWLdX2UKGgGaAloD0MIdOrKZ3m9cUCUhpRSlGgVTSwBaBZHQKIchiWmgrZ1fZQoaAZoCWgPQwgbZ9MRwDtyQJSGlFKUaBVL3mgWR0CiHIwTmGM5dX2UKGgGaAloD0MIjBAebZzYckCUhpRSlGgVTQABaBZHQKIczbnHNot1fZQoaAZoCWgPQwjAJQD/lAxxQJSGlFKUaBVNDQFoFkdAohzqw+t8u3V9lChoBmgJaA9DCLGoiNNJijJAlIaUUpRoFUvEaBZHQKIc+h+vyLB1fZQoaAZoCWgPQwjooiHjUUNtQJSGlFKUaBVNFAFoFkdAoh0vSa3I/HV9lChoBmgJaA9DCAubAS7IE3FAlIaUUpRoFUv9aBZHQKIdWRmseXB1fZQoaAZoCWgPQwgyOEpe3XZwQJSGlFKUaBVNLAFoFkdAoh21KsdT53V9lChoBmgJaA9DCDzdeeI5xm9AlIaUUpRoFU1jAWgWR0CiHe9eY2KmdX2UKGgGaAloD0MIzjP2JZsdcECUhpRSlGgVS/NoFkdAoh5HVd5Y5nV9lChoBmgJaA9DCKCM8WF2Xm9AlIaUUpRoFUv+aBZHQKIeaHQhOgx1fZQoaAZoCWgPQwiqRUQxubxyQJSGlFKUaBVL52gWR0CiHnQAU+LWdX2UKGgGaAloD0MIeqnYmFeabkCUhpRSlGgVTR8BaBZHQKIeeYWLxZx1fZQoaAZoCWgPQwicMjffCF1wQJSGlFKUaBVL8mgWR0CiHqvy9VWCdX2UKGgGaAloD0MI6rRug9qpckCUhpRSlGgVTRABaBZHQKIfL+XqqwR1fZQoaAZoCWgPQwhslWBxuGhxQJSGlFKUaBVL/GgWR0CiHzgNwzcidX2UKGgGaAloD0MIJTyh118vc0CUhpRSlGgVS+poFkdAoh9NBWxQi3V9lChoBmgJaA9DCD0NGCQ9C3JAlIaUUpRoFU1RAWgWR0CiH5JtBOYZdX2UKGgGaAloD0MIxEFClG/HcUCUhpRSlGgVS/hoFkdAoh+g+GGmDXV9lChoBmgJaA9DCGzu6H+5PnJAlIaUUpRoFU0pAWgWR0CiH64fOlfrdX2UKGgGaAloD0MIij+KOnOcbUCUhpRSlGgVS+xoFkdAoh+2A3DNyHV9lChoBmgJaA9DCJM4K6KmrHJAlIaUUpRoFUvmaBZHQKIgJOsT37F1fZQoaAZoCWgPQwiQn41cN4dyQJSGlFKUaBVNVAFoFkdAoiCGWMS9NHV9lChoBmgJaA9DCJSGGoWkAXBAlIaUUpRoFUv2aBZHQKIgj4B3iaR1fZQoaAZoCWgPQwjBxB9F3YJwQJSGlFKUaBVL9WgWR0CiIOMtsenydX2UKGgGaAloD0MICJChY0eFckCUhpRSlGgVS/FoFkdAoiEEdcSoO3V9lChoBmgJaA9DCKX2ItpO6HJAlIaUUpRoFUv2aBZHQKIhGH0K7Zp1fZQoaAZoCWgPQwh3vwrwnc9wQJSGlFKUaBVNXgFoFkdAoiEc0gr6L3V9lChoBmgJaA9DCNnO91MjWHJAlIaUUpRoFUv0aBZHQKIqmukk8ih1fZQoaAZoCWgPQwh07+GSI/1yQJSGlFKUaBVL+WgWR0CiK0ZVn27GdX2UKGgGaAloD0MIdGIP7eNscECUhpRSlGgVTVEBaBZHQKIrUOlO45N1fZQoaAZoCWgPQwjTiJl93ipxQJSGlFKUaBVNEgFoFkdAoit33i704HV9lChoBmgJaA9DCDc4Ef1a7G5AlIaUUpRoFUv4aBZHQKIrmSf16E91fZQoaAZoCWgPQwjAIOnTashwQJSGlFKUaBVL72gWR0CiK5fzSThYdX2UKGgGaAloD0MIOGivPl6pcUCUhpRSlGgVTSwBaBZHQKIrtgaWHDd1fZQoaAZoCWgPQwjPnzaqUw1zQJSGlFKUaBVNEgFoFkdAoivL349HMHV9lChoBmgJaA9DCFQ57Sm5I3BAlIaUUpRoFU0eAWgWR0CiLAJ0wJw9dX2UKGgGaAloD0MITn6LTtYpcUCUhpRSlGgVTRABaBZHQKIsVllK9PF1fZQoaAZoCWgPQwgOSphp+71vQJSGlFKUaBVL82gWR0CiLGIdlum8dX2UKGgGaAloD0MIkuumlNdvb0CUhpRSlGgVTQgBaBZHQKIsnPj4pMJ1fZQoaAZoCWgPQwgL1GLwsG1xQJSGlFKUaBVL2WgWR0CiLKHerMkhdX2UKGgGaAloD0MIuarsu2I6cUCUhpRSlGgVS/RoFkdAoizMHUtqYnV9lChoBmgJaA9DCFaBWgyeH29AlIaUUpRoFU0nAWgWR0CiLS+nqFAWdX2UKGgGaAloD0MIV+4FZsUWckCUhpRSlGgVTRgBaBZHQKItaWDYh+x1fZQoaAZoCWgPQwizYOKPYsJxQJSGlFKUaBVL3mgWR0CiLc3BpHqedX2UKGgGaAloD0MIW11OCcgMc0CUhpRSlGgVS+hoFkdAoi3sI/qxDHV9lChoBmgJaA9DCPoJZ7fWr3JAlIaUUpRoFU0dAWgWR0CiLjAwGnn/dX2UKGgGaAloD0MIrJFdadldcECUhpRSlGgVS/ZoFkdAoi41o6CDmXV9lChoBmgJaA9DCGjsSzYeVnJAlIaUUpRoFU0dAWgWR0CiLjoW56MSdX2UKGgGaAloD0MII74Tsx6NckCUhpRSlGgVTRQBaBZHQKIuR1EmY0F1fZQoaAZoCWgPQwjHKqVneptuQJSGlFKUaBVL+GgWR0CiLotY0VJudX2UKGgGaAloD0MIKO54k998cECUhpRSlGgVTRYBaBZHQKIunwNLDht1fZQoaAZoCWgPQwhE3nL14/lxQJSGlFKUaBVL5mgWR0CiLr6AOJ+EdX2UKGgGaAloD0MIYI+JlCbEcECUhpRSlGgVS9RoFkdAoi7NKf4AS3V9lChoBmgJaA9DCJ/MP/omlW9AlIaUUpRoFUv3aBZHQKIu23m3fAN1fZQoaAZoCWgPQwjqP2t+fPRtQJSGlFKUaBVL9GgWR0CiL0q4H5aedX2UKGgGaAloD0MII9kj1Ew5cUCUhpRSlGgVTQoBaBZHQKIvU5jH4oJ1fZQoaAZoCWgPQwiifazgd3dwQJSGlFKUaBVL+2gWR0CiL8HJT2nLdX2UKGgGaAloD0MIhh3GpP9wcECUhpRSlGgVTUYCaBZHQKIwW0cfeUJ1fZQoaAZoCWgPQwhMGM3K9plxQJSGlFKUaBVL+WgWR0CiMHkkrwvydX2UKGgGaAloD0MI/TIYI5JrckCUhpRSlGgVTRIBaBZHQKIwownH/951fZQoaAZoCWgPQwhJSQ9Da/lyQJSGlFKUaBVL8GgWR0CiMKNDUmUodX2UKGgGaAloD0MIueF3063TcUCUhpRSlGgVS+toFkdAojCtTNt65XV9lChoBmgJaA9DCMpwPJ8BJ3JAlIaUUpRoFU1GAWgWR0CiMNBppN9IdX2UKGgGaAloD0MIAg6hSo2scECUhpRSlGgVS+ZoFkdAojDl0A93bHV9lChoBmgJaA9DCHhDGhX4uHBAlIaUUpRoFU0VAWgWR0CiMQb8ejmCdX2UKGgGaAloD0MI51Wd1cKJckCUhpRSlGgVTRIBaBZHQKIxbGAkLQZ1fZQoaAZoCWgPQwinIarwZy1uQJSGlFKUaBVNOwFoFkdAojFw8QqZt3V9lChoBmgJaA9DCA1wQbYsN3FAlIaUUpRoFU0MAWgWR0CiMX6lchTwdX2UKGgGaAloD0MIR60wfe8lcUCUhpRSlGgVTSEBaBZHQKIx065oXbd1fZQoaAZoCWgPQwg4glSKHf1yQJSGlFKUaBVL+2gWR0CiMekETxoadX2UKGgGaAloD0MIy6Da4IQ/ckCUhpRSlGgVTUYBaBZHQKIyH+irT6V1fZQoaAZoCWgPQwgceouH9+RxQJSGlFKUaBVL+WgWR0CiMleGfwqidX2UKGgGaAloD0MIT+s2qH0ycUCUhpRSlGgVTWABaBZHQKIy/hy8zyl1fZQoaAZoCWgPQwg4nzpWaQhyQJSGlFKUaBVL4mgWR0CiMzwYDTz/dX2UKGgGaAloD0MIObh0zDnFcUCUhpRSlGgVTQcBaBZHQKIzaDJU5uJ1fZQoaAZoCWgPQwhWgsXhDNRxQJSGlFKUaBVL/GgWR0CiM2/S6UaAdX2UKGgGaAloD0MIPUM4Ztk3O0CUhpRSlGgVS9VoFkdAojOp8D0UXnV9lChoBmgJaA9DCL+6KlALiW1AlIaUUpRoFU06AWgWR0CiM6hwEQoTdX2UKGgGaAloD0MIFf93RMUfckCUhpRSlGgVTTkBaBZHQKIz5yzXz191fZQoaAZoCWgPQwjDDmPSX8VyQJSGlFKUaBVNTAFoFkdAojPzdcjZ+XV9lChoBmgJaA9DCM+ey9QkfXJAlIaUUpRoFU1AAWgWR0CiM/lyzXz2dX2UKGgGaAloD0MI3h0Zq02McUCUhpRSlGgVS/loFkdAojQX+KjzqnV9lChoBmgJaA9DCK7WicvxfXFAlIaUUpRoFU0AAWgWR0CiNBv/aQFLdX2UKGgGaAloD0MIv2TjwVaUcECUhpRSlGgVTSABaBZHQKI00vvBrN51fZQoaAZoCWgPQwibcRqiinlxQJSGlFKUaBVNCAFoFkdAojTmCuloDnV9lChoBmgJaA9DCE5DVOFP+G1AlIaUUpRoFU0fAWgWR0CiNOegDifhdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-67-generic-x86_64-with-glibc2.31 # 74~20.04.1-Ubuntu SMP Wed Feb 22 14:52:34 UTC 2023", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6be8e62e8e50233b1d0485f831ef0784f1b9e16eb100a75a86dca9207e2f8c3
|
3 |
+
size 146738
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f237e681900>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f237e681990>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f237e681a20>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f237e681ab0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f237e681b40>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f237e681bd0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f237e681c60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f237e681cf0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f237e681d80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f237e681e10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f237e681ea0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f237e681f30>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f237e67bb00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000.0,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679395814800006343,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": null,
|
59 |
+
"_last_episode_starts": {
|
60 |
+
":type:": "<class 'numpy.ndarray'>",
|
61 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
62 |
+
},
|
63 |
+
"_last_original_obs": null,
|
64 |
+
"_episode_num": 0,
|
65 |
+
"use_sde": false,
|
66 |
+
"sde_sample_freq": -1,
|
67 |
+
"_current_progress_remaining": -0.015808000000000044,
|
68 |
+
"ep_info_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVVxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWFNZFDZ2cECUhpRSlIwBbJRNIQGMAXSUR0CiGg6yrxRVdX2UKGgGaAloD0MIorPMIpTebkCUhpRSlGgVTS4BaBZHQKIaDqUNayN1fZQoaAZoCWgPQwgQlrGhm1RwQJSGlFKUaBVNHgFoFkdAohom0svqT3V9lChoBmgJaA9DCCiBzTl4IHJAlIaUUpRoFU0qAWgWR0CiGm8n3L3cdX2UKGgGaAloD0MIECOER5tUcUCUhpRSlGgVTU8BaBZHQKIakhbnoxJ1fZQoaAZoCWgPQwhGCmXh649vQJSGlFKUaBVNUQFoFkdAohrPktEofHV9lChoBmgJaA9DCN4DdF/O2nJAlIaUUpRoFU0oAWgWR0CiG1h7VrhzdX2UKGgGaAloD0MI2sh1U8pgcUCUhpRSlGgVTSwBaBZHQKIbrCuU2UB1fZQoaAZoCWgPQwgdsKvJUwtyQJSGlFKUaBVNAAFoFkdAohurcqOLi3V9lChoBmgJaA9DCMLdWbttIG9AlIaUUpRoFU05AWgWR0CiG/yLZSNwdX2UKGgGaAloD0MI7IZtizKObUCUhpRSlGgVTQoBaBZHQKIb/kUbkwN1fZQoaAZoCWgPQwgmAP+UqopwQJSGlFKUaBVNlgFoFkdAohwdG3F1jnV9lChoBmgJaA9DCC6PNSNDtHBAlIaUUpRoFU1wAWgWR0CiHE7kXDWLdX2UKGgGaAloD0MIdOrKZ3m9cUCUhpRSlGgVTSwBaBZHQKIchiWmgrZ1fZQoaAZoCWgPQwgbZ9MRwDtyQJSGlFKUaBVL3mgWR0CiHIwTmGM5dX2UKGgGaAloD0MIjBAebZzYckCUhpRSlGgVTQABaBZHQKIczbnHNot1fZQoaAZoCWgPQwjAJQD/lAxxQJSGlFKUaBVNDQFoFkdAohzqw+t8u3V9lChoBmgJaA9DCLGoiNNJijJAlIaUUpRoFUvEaBZHQKIc+h+vyLB1fZQoaAZoCWgPQwjooiHjUUNtQJSGlFKUaBVNFAFoFkdAoh0vSa3I/HV9lChoBmgJaA9DCAubAS7IE3FAlIaUUpRoFUv9aBZHQKIdWRmseXB1fZQoaAZoCWgPQwgyOEpe3XZwQJSGlFKUaBVNLAFoFkdAoh21KsdT53V9lChoBmgJaA9DCDzdeeI5xm9AlIaUUpRoFU1jAWgWR0CiHe9eY2KmdX2UKGgGaAloD0MIzjP2JZsdcECUhpRSlGgVS/NoFkdAoh5HVd5Y5nV9lChoBmgJaA9DCKCM8WF2Xm9AlIaUUpRoFUv+aBZHQKIeaHQhOgx1fZQoaAZoCWgPQwiqRUQxubxyQJSGlFKUaBVL52gWR0CiHnQAU+LWdX2UKGgGaAloD0MIeqnYmFeabkCUhpRSlGgVTR8BaBZHQKIeeYWLxZx1fZQoaAZoCWgPQwicMjffCF1wQJSGlFKUaBVL8mgWR0CiHqvy9VWCdX2UKGgGaAloD0MI6rRug9qpckCUhpRSlGgVTRABaBZHQKIfL+XqqwR1fZQoaAZoCWgPQwhslWBxuGhxQJSGlFKUaBVL/GgWR0CiHzgNwzcidX2UKGgGaAloD0MIJTyh118vc0CUhpRSlGgVS+poFkdAoh9NBWxQi3V9lChoBmgJaA9DCD0NGCQ9C3JAlIaUUpRoFU1RAWgWR0CiH5JtBOYZdX2UKGgGaAloD0MIxEFClG/HcUCUhpRSlGgVS/hoFkdAoh+g+GGmDXV9lChoBmgJaA9DCGzu6H+5PnJAlIaUUpRoFU0pAWgWR0CiH64fOlfrdX2UKGgGaAloD0MIij+KOnOcbUCUhpRSlGgVS+xoFkdAoh+2A3DNyHV9lChoBmgJaA9DCJM4K6KmrHJAlIaUUpRoFUvmaBZHQKIgJOsT37F1fZQoaAZoCWgPQwiQn41cN4dyQJSGlFKUaBVNVAFoFkdAoiCGWMS9NHV9lChoBmgJaA9DCJSGGoWkAXBAlIaUUpRoFUv2aBZHQKIgj4B3iaR1fZQoaAZoCWgPQwjBxB9F3YJwQJSGlFKUaBVL9WgWR0CiIOMtsenydX2UKGgGaAloD0MICJChY0eFckCUhpRSlGgVS/FoFkdAoiEEdcSoO3V9lChoBmgJaA9DCKX2ItpO6HJAlIaUUpRoFUv2aBZHQKIhGH0K7Zp1fZQoaAZoCWgPQwh3vwrwnc9wQJSGlFKUaBVNXgFoFkdAoiEc0gr6L3V9lChoBmgJaA9DCNnO91MjWHJAlIaUUpRoFUv0aBZHQKIqmukk8ih1fZQoaAZoCWgPQwh07+GSI/1yQJSGlFKUaBVL+WgWR0CiK0ZVn27GdX2UKGgGaAloD0MIdGIP7eNscECUhpRSlGgVTVEBaBZHQKIrUOlO45N1fZQoaAZoCWgPQwjTiJl93ipxQJSGlFKUaBVNEgFoFkdAoit33i704HV9lChoBmgJaA9DCDc4Ef1a7G5AlIaUUpRoFUv4aBZHQKIrmSf16E91fZQoaAZoCWgPQwjAIOnTashwQJSGlFKUaBVL72gWR0CiK5fzSThYdX2UKGgGaAloD0MIOGivPl6pcUCUhpRSlGgVTSwBaBZHQKIrtgaWHDd1fZQoaAZoCWgPQwjPnzaqUw1zQJSGlFKUaBVNEgFoFkdAoivL349HMHV9lChoBmgJaA9DCFQ57Sm5I3BAlIaUUpRoFU0eAWgWR0CiLAJ0wJw9dX2UKGgGaAloD0MITn6LTtYpcUCUhpRSlGgVTRABaBZHQKIsVllK9PF1fZQoaAZoCWgPQwgOSphp+71vQJSGlFKUaBVL82gWR0CiLGIdlum8dX2UKGgGaAloD0MIkuumlNdvb0CUhpRSlGgVTQgBaBZHQKIsnPj4pMJ1fZQoaAZoCWgPQwgL1GLwsG1xQJSGlFKUaBVL2WgWR0CiLKHerMkhdX2UKGgGaAloD0MIuarsu2I6cUCUhpRSlGgVS/RoFkdAoizMHUtqYnV9lChoBmgJaA9DCFaBWgyeH29AlIaUUpRoFU0nAWgWR0CiLS+nqFAWdX2UKGgGaAloD0MIV+4FZsUWckCUhpRSlGgVTRgBaBZHQKItaWDYh+x1fZQoaAZoCWgPQwizYOKPYsJxQJSGlFKUaBVL3mgWR0CiLc3BpHqedX2UKGgGaAloD0MIW11OCcgMc0CUhpRSlGgVS+hoFkdAoi3sI/qxDHV9lChoBmgJaA9DCPoJZ7fWr3JAlIaUUpRoFU0dAWgWR0CiLjAwGnn/dX2UKGgGaAloD0MIrJFdadldcECUhpRSlGgVS/ZoFkdAoi41o6CDmXV9lChoBmgJaA9DCGjsSzYeVnJAlIaUUpRoFU0dAWgWR0CiLjoW56MSdX2UKGgGaAloD0MII74Tsx6NckCUhpRSlGgVTRQBaBZHQKIuR1EmY0F1fZQoaAZoCWgPQwjHKqVneptuQJSGlFKUaBVL+GgWR0CiLotY0VJudX2UKGgGaAloD0MIKO54k998cECUhpRSlGgVTRYBaBZHQKIunwNLDht1fZQoaAZoCWgPQwhE3nL14/lxQJSGlFKUaBVL5mgWR0CiLr6AOJ+EdX2UKGgGaAloD0MIYI+JlCbEcECUhpRSlGgVS9RoFkdAoi7NKf4AS3V9lChoBmgJaA9DCJ/MP/omlW9AlIaUUpRoFUv3aBZHQKIu23m3fAN1fZQoaAZoCWgPQwjqP2t+fPRtQJSGlFKUaBVL9GgWR0CiL0q4H5aedX2UKGgGaAloD0MII9kj1Ew5cUCUhpRSlGgVTQoBaBZHQKIvU5jH4oJ1fZQoaAZoCWgPQwiifazgd3dwQJSGlFKUaBVL+2gWR0CiL8HJT2nLdX2UKGgGaAloD0MIhh3GpP9wcECUhpRSlGgVTUYCaBZHQKIwW0cfeUJ1fZQoaAZoCWgPQwhMGM3K9plxQJSGlFKUaBVL+WgWR0CiMHkkrwvydX2UKGgGaAloD0MI/TIYI5JrckCUhpRSlGgVTRIBaBZHQKIwownH/951fZQoaAZoCWgPQwhJSQ9Da/lyQJSGlFKUaBVL8GgWR0CiMKNDUmUodX2UKGgGaAloD0MIueF3063TcUCUhpRSlGgVS+toFkdAojCtTNt65XV9lChoBmgJaA9DCMpwPJ8BJ3JAlIaUUpRoFU1GAWgWR0CiMNBppN9IdX2UKGgGaAloD0MIAg6hSo2scECUhpRSlGgVS+ZoFkdAojDl0A93bHV9lChoBmgJaA9DCHhDGhX4uHBAlIaUUpRoFU0VAWgWR0CiMQb8ejmCdX2UKGgGaAloD0MI51Wd1cKJckCUhpRSlGgVTRIBaBZHQKIxbGAkLQZ1fZQoaAZoCWgPQwinIarwZy1uQJSGlFKUaBVNOwFoFkdAojFw8QqZt3V9lChoBmgJaA9DCA1wQbYsN3FAlIaUUpRoFU0MAWgWR0CiMX6lchTwdX2UKGgGaAloD0MIR60wfe8lcUCUhpRSlGgVTSEBaBZHQKIx065oXbd1fZQoaAZoCWgPQwg4glSKHf1yQJSGlFKUaBVL+2gWR0CiMekETxoadX2UKGgGaAloD0MIy6Da4IQ/ckCUhpRSlGgVTUYBaBZHQKIyH+irT6V1fZQoaAZoCWgPQwgceouH9+RxQJSGlFKUaBVL+WgWR0CiMleGfwqidX2UKGgGaAloD0MIT+s2qH0ycUCUhpRSlGgVTWABaBZHQKIy/hy8zyl1fZQoaAZoCWgPQwg4nzpWaQhyQJSGlFKUaBVL4mgWR0CiMzwYDTz/dX2UKGgGaAloD0MIObh0zDnFcUCUhpRSlGgVTQcBaBZHQKIzaDJU5uJ1fZQoaAZoCWgPQwhWgsXhDNRxQJSGlFKUaBVL/GgWR0CiM2/S6UaAdX2UKGgGaAloD0MIPUM4Ztk3O0CUhpRSlGgVS9VoFkdAojOp8D0UXnV9lChoBmgJaA9DCL+6KlALiW1AlIaUUpRoFU06AWgWR0CiM6hwEQoTdX2UKGgGaAloD0MIFf93RMUfckCUhpRSlGgVTTkBaBZHQKIz5yzXz191fZQoaAZoCWgPQwjDDmPSX8VyQJSGlFKUaBVNTAFoFkdAojPzdcjZ+XV9lChoBmgJaA9DCM+ey9QkfXJAlIaUUpRoFU1AAWgWR0CiM/lyzXz2dX2UKGgGaAloD0MI3h0Zq02McUCUhpRSlGgVS/loFkdAojQX+KjzqnV9lChoBmgJaA9DCK7WicvxfXFAlIaUUpRoFU0AAWgWR0CiNBv/aQFLdX2UKGgGaAloD0MIv2TjwVaUcECUhpRSlGgVTSABaBZHQKI00vvBrN51fZQoaAZoCWgPQwibcRqiinlxQJSGlFKUaBVNCAFoFkdAojTmCuloDnV9lChoBmgJaA9DCE5DVOFP+G1AlIaUUpRoFU0fAWgWR0CiNOegDifhdWUu"
|
71 |
+
},
|
72 |
+
"ep_success_buffer": {
|
73 |
+
":type:": "<class 'collections.deque'>",
|
74 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
75 |
+
},
|
76 |
+
"_n_updates": 248,
|
77 |
+
"n_steps": 1024,
|
78 |
+
"gamma": 0.999,
|
79 |
+
"gae_lambda": 0.98,
|
80 |
+
"ent_coef": 0.01,
|
81 |
+
"vf_coef": 0.5,
|
82 |
+
"max_grad_norm": 0.5,
|
83 |
+
"batch_size": 64,
|
84 |
+
"n_epochs": 4,
|
85 |
+
"clip_range": {
|
86 |
+
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL3JlYW4vbWluaWNvbmRhMy9lbnZzL2hmX2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
88 |
+
},
|
89 |
+
"clip_range_vf": null,
|
90 |
+
"normalize_advantage": true,
|
91 |
+
"target_kl": null
|
92 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad2d143169e77f351ec871e31298c2fff463076846c0f70a983568e5a8c6526c
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00b0f1afb032e7a7e3eec9aa07b0c563168e4ad16d787e8d25d14d7052f0d019
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-67-generic-x86_64-with-glibc2.31 # 74~20.04.1-Ubuntu SMP Wed Feb 22 14:52:34 UTC 2023
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (233 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 281.6574213193321, "std_reward": 13.162506782859785, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-21T14:46:09.363239"}
|