Added snippets
Browse files
README.md
CHANGED
@@ -60,9 +60,118 @@ We evaluated the performance of the SmolVLM2 family on the following scientific
|
|
60 |
|
61 |
### How to get started
|
62 |
|
63 |
-
You can use transformers to load, infer and fine-tune SmolVLM.
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
### Model optimizations
|
|
|
60 |
|
61 |
### How to get started
|
62 |
|
63 |
+
You can use transformers to load, infer and fine-tune SmolVLM. Make sure you have num2words, flash-attn and latest transformers installed.
|
64 |
+
You can load the model as follows.
|
65 |
+
|
66 |
+
```python
|
67 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
68 |
+
|
69 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
70 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
71 |
+
model_path,
|
72 |
+
torch_dtype=torch.bfloat16,
|
73 |
+
_attn_implementation="flash_attention_2"
|
74 |
+
).to("cuda")
|
75 |
+
```
|
76 |
+
|
77 |
+
#### Simple Inference
|
78 |
+
|
79 |
+
You preprocess your inputs directly using chat templates and directly passing them
|
80 |
+
|
81 |
+
```python
|
82 |
+
messages = [
|
83 |
+
{
|
84 |
+
"role": "user",
|
85 |
+
"content": [
|
86 |
+
{"type": "text", "text": "What is in this image?"},
|
87 |
+
{"type": "image", "path": "path_to_img.png"},
|
88 |
+
|
89 |
+
]
|
90 |
+
},
|
91 |
+
]
|
92 |
+
|
93 |
+
inputs = processor.apply_chat_template(
|
94 |
+
messages,
|
95 |
+
add_generation_prompt=True,
|
96 |
+
tokenize=True,
|
97 |
+
return_dict=True,
|
98 |
+
return_tensors="pt",
|
99 |
+
).to(model.device)
|
100 |
+
|
101 |
+
generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=64)
|
102 |
+
generated_texts = processor.batch_decode(
|
103 |
+
generated_ids,
|
104 |
+
skip_special_tokens=True,
|
105 |
+
)
|
106 |
+
print(generated_texts[0])
|
107 |
+
```
|
108 |
+
|
109 |
+
#### Video Inference
|
110 |
+
|
111 |
+
To use SmolVLM2 for video inference, make sure you have decord installed.
|
112 |
+
|
113 |
+
```python
|
114 |
+
messages = [
|
115 |
+
{
|
116 |
+
"role": "user",
|
117 |
+
"content": [
|
118 |
+
{"type": "video", "path": "path_to_video.mp4"},
|
119 |
+
{"type": "text", "text": "Describe this video in detail"}
|
120 |
+
]
|
121 |
+
},
|
122 |
+
]
|
123 |
+
|
124 |
+
inputs = processor.apply_chat_template(
|
125 |
+
messages,
|
126 |
+
add_generation_prompt=True,
|
127 |
+
tokenize=True,
|
128 |
+
return_dict=True,
|
129 |
+
return_tensors="pt",
|
130 |
+
).to(model.device)
|
131 |
+
|
132 |
+
generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=64)
|
133 |
+
generated_texts = processor.batch_decode(
|
134 |
+
generated_ids,
|
135 |
+
skip_special_tokens=True,
|
136 |
+
)
|
137 |
+
|
138 |
+
print(generated_texts[0])
|
139 |
+
```
|
140 |
+
#### Multi-image Interleaved Inference
|
141 |
+
|
142 |
+
You can interleave multiple media with text using chat templates.
|
143 |
+
|
144 |
+
```python
|
145 |
+
import torch
|
146 |
+
|
147 |
+
|
148 |
+
messages = [
|
149 |
+
{
|
150 |
+
"role": "user",
|
151 |
+
"content": [
|
152 |
+
{"type": "text", "text": "What is the similarity between this image <image>"},
|
153 |
+
|
154 |
+
{"type": "image", "path": "image_1.png"},
|
155 |
+
{"type": "text", "text": "and this image <image>"},
|
156 |
+
{"type": "image", "path": "image_2.png"},
|
157 |
+
]
|
158 |
+
},
|
159 |
+
]
|
160 |
+
inputs = processor.apply_chat_template(
|
161 |
+
messages,
|
162 |
+
add_generation_prompt=True,
|
163 |
+
tokenize=True,
|
164 |
+
return_dict=True,
|
165 |
+
return_tensors="pt",
|
166 |
+
).to(model.device)
|
167 |
+
|
168 |
+
generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=64)
|
169 |
+
generated_texts = processor.batch_decode(
|
170 |
+
generated_ids,
|
171 |
+
skip_special_tokens=True,
|
172 |
+
)
|
173 |
+
print(generated_texts[0])
|
174 |
+
```
|
175 |
|
176 |
|
177 |
### Model optimizations
|