File size: 3,309 Bytes
c835b64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
base_model: bigcode/starencoder
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: stack-edu-classifier-ruby
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# stack-edu-classifier-ruby

This model is a fine-tuned version of [bigcode/starencoder](https://huggingface.co/bigcode/starencoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3282
- Precision: 0.4623
- Recall: 0.3260
- F1 Macro: 0.3536
- Accuracy: 0.6657
- F1 Binary Minimum3: 0.6101

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 256
- seed: 0
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 128
- total_eval_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1 Macro | Accuracy | F1 Binary Minimum3 |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:--------:|:--------:|:------------------:|
| No log        | 0       | 0     | 4.7647          | 0.0010    | 0.1667 | 0.0020   | 0.0062   | 0                  |
| 0.358         | 1.4368  | 1000  | 0.3549          | 0.4093    | 0.2953 | 0.3072   | 0.6513   | 0.5882             |
| 0.3559        | 2.8736  | 2000  | 0.3425          | 0.4649    | 0.3087 | 0.3294   | 0.6571   | 0.6143             |
| 0.3534        | 4.3103  | 3000  | 0.3391          | 0.4318    | 0.3144 | 0.3349   | 0.6586   | 0.6149             |
| 0.3539        | 5.7471  | 4000  | 0.3394          | 0.4219    | 0.3244 | 0.3446   | 0.6579   | 0.6298             |
| 0.3585        | 7.1839  | 5000  | 0.3359          | 0.4756    | 0.3106 | 0.3350   | 0.6622   | 0.6069             |
| 0.3476        | 8.6207  | 6000  | 0.3339          | 0.4551    | 0.3178 | 0.3415   | 0.6638   | 0.6082             |
| 0.3496        | 10.0575 | 7000  | 0.3307          | 0.4512    | 0.3263 | 0.3505   | 0.6656   | 0.6204             |
| 0.3362        | 11.4943 | 8000  | 0.3307          | 0.4657    | 0.3228 | 0.3485   | 0.6640   | 0.6178             |
| 0.3442        | 12.9310 | 9000  | 0.3307          | 0.4771    | 0.3248 | 0.3517   | 0.6677   | 0.6095             |
| 0.344         | 14.3678 | 10000 | 0.3287          | 0.4774    | 0.3222 | 0.3496   | 0.6660   | 0.6147             |
| 0.3332        | 15.8046 | 11000 | 0.3281          | 0.4678    | 0.3240 | 0.3504   | 0.6658   | 0.6168             |
| 0.3359        | 17.2414 | 12000 | 0.3300          | 0.4658    | 0.3203 | 0.3471   | 0.6643   | 0.6100             |
| 0.3306        | 18.6782 | 13000 | 0.3282          | 0.4623    | 0.3260 | 0.3536   | 0.6657   | 0.6101             |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1