HuggingPanda commited on
Commit
a9991c3
·
verified ·
1 Parent(s): 055f1cc

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Docling Model for Layout
2
+
3
+ This is the **Docling model for layout detection**, designed to facilitate easy importing and usage like any other Hugging Face model.
4
+
5
+ This model is part of the [Docling repository](https://huggingface.co/ds4sd/docling-models), which provides document layout analysis tools.
6
+
7
+ ## **Usage Example**
8
+ Here's how you can load and use the model:
9
+
10
+ ```python
11
+ import torch
12
+ from PIL import Image
13
+ from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
14
+
15
+ # Load the model and processor
16
+ image_processor = RTDetrImageProcessor.from_pretrained("your-username/your-model-name")
17
+ model = RTDetrForObjectDetection.from_pretrained("your-username/your-model-name")
18
+
19
+ # Load an image
20
+ image = Image.open("your-image.png")
21
+
22
+ # Preprocess the image
23
+ inputs = image_processor(images=image, return_tensors="pt")
24
+
25
+ # Perform inference
26
+ with torch.no_grad():
27
+ outputs = model(**inputs)
28
+
29
+ # Post-process results
30
+ results = image_processor.post_process_object_detection(
31
+ outputs,
32
+ target_sizes=torch.tensor([(image.height, image.width)]),
33
+ threshold=0.3
34
+ )
35
+
36
+ # Print detected objects
37
+ for result in results:
38
+ for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
39
+ score, label = score.item(), label_id.item()
40
+ box = [round(i, 2) for i in box.tolist()]
41
+ print(f"{model.config.id2label[label]}: {score:.2f} {box}")
42
+ ```
43
+
44
+
45
+ ## **Model Information**
46
+ - **Base Model:** RT-DETR (Robust Transformer-based Object Detector)
47
+ - **Intended Use:** Layout detection for documents
48
+ - **Framework:** [Hugging Face Transformers](https://huggingface.co/docs/transformers/index)
49
+ - **Dataset Used:** Internal dataset for document structure recognition
50
+ - **License:** Apache 2.0
51
+
52
+ ## **Citing This Model**
53
+ If you use this model in your work, please cite the main **Docling repository**:
54
+
55
+ ```
56
+ @misc{docling2024, title={Docling Models for Document Layout Analysis}, author={DS4SD Team}, year={2024}, howpublished={Hugging Face Repository}, url={https://huggingface.co/ds4sd/docling-models} }
57
+ ```
58
+
59
+ For more details, visit the main repo: [ds4sd/docling-models](https://huggingface.co/ds4sd/docling-models).
60
+
61
+ ## **Contact**
62
+ For questions or issues, please open a discussion on Hugging Face or contact [[email protected]].
63
+