sebasmos commited on
Commit
2107c2a
·
verified ·
1 Parent(s): c4b8344

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -4
README.md CHANGED
@@ -1,10 +1,56 @@
1
  ---
2
  tags:
 
 
 
 
3
  - model_hub_mixin
4
  - pytorch_model_hub_mixin
 
 
 
 
 
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Code: [More Information Needed]
9
- - Paper: [More Information Needed]
10
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  tags:
3
+ - icos
4
+ - edge-ai
5
+ - energy-forecasting
6
+ - anomaly-detection
7
  - model_hub_mixin
8
  - pytorch_model_hub_mixin
9
+ - bento_model
10
+ - ai-coordination
11
+ - metrics-prediction
12
+ - cpu-utilization
13
+ - climate-tech
14
  ---
15
 
16
+ # ICOS-AI/icos_models
17
+
18
+ This repository serves as the **central model registry for the ICOS Intelligence Layer**, supporting the deployment and reuse of AI models developed across the ICOS ecosystem. These models power key system functionalities such as CPU utilization forecasting, anomaly detection, energy efficiency monitoring, and intelligent scheduling across edge-cloud nodes.
19
+
20
+ ## 🔍 What’s Inside
21
+
22
+ The repository contains production-ready AI models developed using PyTorch, XGBoost, ARIMA, and other libraries, and prepared with **BentoML** for reproducible deployment. While active models operate within the live ICOS Intelligence Layer, this repository provides **cold storage** for historical and versioned models.
23
+
24
+ ## Features
25
+
26
+ - Version-controlled AI models with BentoML tagging
27
+ - Compatible with `PytorchModelHubMixin` and Hugging Face CLI
28
+ - Structured model cards and metadata per ICOS standards
29
+ - Plug-and-play ready for integration with ICOS CLI and Export Metrics API
30
+ - Reusable across ICOS nodes for multivariate prediction and intelligent control
31
+
32
+ ## Model Use Cases
33
+
34
+ - Forecasting system-level metrics (e.g., CPU, RAM, power consumption)
35
+ - Detecting anomalies in robotic and infrastructure data
36
+ - Supporting edge AI coordination and telemetry processing
37
+ - Training and evaluation workflows across heterogeneous environments
38
+
39
+ ## Integration Details
40
+
41
+ - **Code**: [Coming Soon]
42
+ - **Paper/Docs**: Please refer to Deliverable [D4.3 – ICOS Dataset and AI Models Marketplace (M36)](https://icos-ai.eu)
43
+ - **Training & Evaluation Framework**: PyTorch, BentoML, XGBoost, Statsmodels, ICOS Export Metrics API
44
+
45
+ ## Contribution Guidelines
46
+
47
+ Contributors must follow ICOS standards for:
48
+ - Naming conventions
49
+ - Metadata fields
50
+ - Documentation cards
51
+ - Token-based authentication (via Hugging Face)
52
+
53
+ For onboarding and access: [See Section 4 of D4.3]
54
+
55
+ ## Access & Licensing
56
+