File size: 11,567 Bytes
56d0a80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import argparse
import json
import gradio as gr
import numpy as np
import torch
from groundingdino.util.inference import load_model
from PIL import Image
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
from tools.inference_tools import (
convert_boxes_from_absolute_to_qwen25_format,
inference_gdino,
postprocess_and_vis_inference_out,
)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path", type=str, default="IDEA-Research/Rex-Thinker-GRPO-7B"
)
parser.add_argument(
"--gdino_config",
type=str,
default="GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py",
)
parser.add_argument(
"--gdino_weights",
type=str,
default="GroundingDINO/weights/groundingdino_swint_ogc.pth",
)
parser.add_argument(
"--server_ip",
type=str,
default="0.0.0.0",
help="IP address to bind the server to",
)
parser.add_argument(
"--server_port",
type=int,
default=2512,
help="Port to run the server on",
)
return parser.parse_args()
def initialize_models(args):
# Load GDINO model
gdino_model = load_model(args.gdino_config, args.gdino_weights).to("cuda")
gdino_model.eval()
# Load Rex-Thinker-GRPO
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
args.model_path,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
processor = AutoProcessor.from_pretrained(
args.model_path, min_pixels=16 * 28 * 28, max_pixels=1280 * 28 * 28
)
return (gdino_model, processor, model)
def process_image(
image,
system_prompt,
cate_name,
referring_expression,
draw_width,
font_size,
gdino_model,
rexthinker_processor,
rexthinker_model,
):
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Run GDINO inference
gdino_boxes = inference_gdino(
image,
[cate_name],
gdino_model,
TEXT_TRESHOLD=0.25,
BOX_TRESHOLD=0.25,
)
proposed_box = convert_boxes_from_absolute_to_qwen25_format(
gdino_boxes, image.width, image.height
)
hint = json.dumps(
{
f"{cate_name}": proposed_box,
}
)
question = f"Hint: Object and its coordinates in this image: {hint}\nPlease detect {referring_expression} in the image."
# compose input
print(f"system_prompt: {system_prompt}")
print(f"question: {question}")
messages = [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{"type": "text", "text": question},
],
},
]
text = rexthinker_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = rexthinker_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
input_height = inputs["image_grid_thw"][0][1] * 14
input_width = inputs["image_grid_thw"][0][2] * 14
# Inference: Generation of the output
generated_ids = rexthinker_model.generate(**inputs, max_new_tokens=4096)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = rexthinker_processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
output_text = output_text[0]
ref_vis_result, gdino_vis_result = postprocess_and_vis_inference_out(
image,
output_text,
proposed_box,
gdino_boxes,
font_size=font_size,
draw_width=draw_width,
input_height=input_height,
input_width=input_width,
)
return gdino_vis_result, ref_vis_result, output_text
def create_demo(models):
(
gdino_model,
rexthinker_processor,
rexthinker_model,
) = models
with gr.Blocks() as demo:
gr.Markdown("# Rex-Thinker Demo")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
gdino_prompt = gr.Textbox(
label="Object Category Name to get Candidate boxes",
placeholder="person",
value="person",
)
referring_prompt = gr.Textbox(
label="Referring Expression",
placeholder="person wearning red shirt and a black hat",
value="person wearning red shirt and a black hat",
)
system_prompt = gr.Textbox(
label="System Prompt",
value="A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
)
with gr.Row():
draw_width = gr.Slider(
minimum=5.0,
maximum=100.0,
value=10.0,
step=1,
label="Draw Width for Visualization",
)
font_size = gr.Slider(
minimum=5.0,
maximum=100.0,
value=20.0,
step=1,
label="Font size for Visualization",
)
run_button = gr.Button("Run")
with gr.Column():
gdino_output = gr.Image(label="GroundingDINO Detection")
final_output = gr.Image(label="Rex-Thinker Visualization")
with gr.Column():
llm_output = gr.Textbox(
label="LLM Raw Output", interactive=False, lines=50, max_lines=100
)
# Add examples section
gr.Markdown("## Examples")
examples = gr.Examples(
examples=[
[
"demo/example_images/demo_tomato.jpg",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"tomato",
"ripe tomato",
10,
20,
],
[
"demo/example_images/demo_helmet.png",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"helmet",
"the forth helmet from left",
10,
20,
],
[
"demo/example_images/demo_person.jpg",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"person",
"person in the red car but not driving",
10,
20,
],
[
"demo/example_images/demo_letter.jpg",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"person",
"person wearing cloth that has two letters",
10,
20,
],
[
"demo/example_images/demo_dog.jpg",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"dog",
"the dog sleep on the bed with a pot under its body",
10,
20,
],
],
inputs=[
input_image,
system_prompt,
gdino_prompt,
referring_prompt,
draw_width,
font_size,
],
outputs=[gdino_output, final_output, llm_output],
fn=lambda img, sys, p1, p2, d, f: process_image(
img,
sys,
p1,
p2,
d,
f,
gdino_model,
rexthinker_processor,
rexthinker_model,
),
cache_examples=False,
)
run_button.click(
fn=lambda img, sys, p1, p2, d, f: process_image(
img,
sys,
p1,
p2,
d,
f,
gdino_model,
rexthinker_processor,
rexthinker_model,
),
inputs=[
input_image,
system_prompt,
gdino_prompt,
referring_prompt,
draw_width,
font_size,
],
outputs=[gdino_output, final_output, llm_output],
)
return demo
def main():
args = parse_args()
models = initialize_models(args)
demo = create_demo(models)
demo.launch(server_name=args.server_ip, server_port=args.server_port, share=True)
if __name__ == "__main__":
main()
|