File size: 6,330 Bytes
56d0a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import argparse
import json
import os

import torch
from groundingdino.util.inference import load_model
from PIL import Image, ImageDraw, ImageFont
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration

from tools.inference_tools import (
    convert_boxes_from_absolute_to_qwen25_format,
    inference_gdino,
    postprocess_and_vis_inference_out,
)

SYSTEM_PROMPT = "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>."


def get_args():
    parser = argparse.ArgumentParser(description="Inference script for Qwen-2.5-VL")
    parser.add_argument(
        "--image_path",
        type=str,
        default="demo/example_images/demo_helmet.png",
        help="Path to the input image",
    )
    parser.add_argument(
        "--cate_name",
        type=str,
        default="helmet",
        help='text prompt for grounding dino, e.g. "cat", "dog", "car"',
    )
    parser.add_argument(
        "--ref_exp",
        type=str,
        default="the forth helmet from left",
        help="Reference expression for Rex-Thinker, e.g. 'the cat on the left'",
    )
    parser.add_argument(
        "--vis_path",
        type=str,
        default="vis/example_output.jpg",
        help="Path to save the visualization result",
    )
    parser.add_argument(
        "--model_path",
        type=str,
        default="IDEA-Research/Rex-Thinker-GRPO-7B",
        help="Path to the input image",
    )
    parser.add_argument(
        "--gdino_config",
        type=str,
        default="GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py",
        help="Path to Grounding DINO config",
    )
    parser.add_argument(
        "--gdino_weights",
        type=str,
        default="GroundingDINO/weights/groundingdino_swint_ogc.pth",
        help="Path to Grounding DINO weights",
    )
    parser.add_argument(
        "--qwen_model_path",
        type=str,
        default="IDEA-Research/Rex-Thinker-GRPO-7B",
        help="Path to Qwen-2.5-VL model or model identifier from Hugging Face Hub",
    )

    return parser.parse_args()


if __name__ == "__main__":
    args = get_args()
    image_path = args.image_path
    cate_name = args.cate_name
    ref_exp = args.ref_exp
    gdino_config = args.gdino_config
    gdino_weights = args.gdino_weights
    qwen_model_path = args.qwen_model_path

    # Load the Grounding DINO model
    gdino_model = load_model(gdino_config, gdino_weights)
    gdino_model.eval()

    # Load Rex-Thinker-GRPO
    model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
        args.model_path,
        torch_dtype=torch.bfloat16,
        attn_implementation="flash_attention_2",
        device_map="auto",
    )
    processor = AutoProcessor.from_pretrained(
        args.model_path, min_pixels=16 * 28 * 28, max_pixels=1280 * 28 * 28
    )

    # Load the image
    image = Image.open(image_path).convert("RGB")

    # Prepare the text prompts for Grounding DINO
    prompts = [cate_name]

    # Run inference with Grounding DINO to get box hint
    gdino_boxes = inference_gdino(image, prompts, gdino_model)

    proposed_box = convert_boxes_from_absolute_to_qwen25_format(
        gdino_boxes, image.width, image.height
    )
    hint = json.dumps(
        {
            f"{cate_name}": proposed_box,
        }
    )
    question = f"Hint: Object and its coordinates in this image: {hint}\nPlease detect {ref_exp} in the image."

    # compose input
    messages = [
        {
            "role": "system",
            "content": SYSTEM_PROMPT,
        },
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": image,
                },
                {"type": "text", "text": question},
            ],
        },
    ]
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")
    input_height = inputs["image_grid_thw"][0][1] * 14
    input_width = inputs["image_grid_thw"][0][2] * 14

    # Inference: Generation of the output
    generated_ids = model.generate(**inputs, max_new_tokens=4096)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :]
        for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False,
    )
    output_text = output_text[0]
    print(output_text)

    ref_vis_result, gdino_vis_result = postprocess_and_vis_inference_out(
        image,
        output_text,
        proposed_box,
        gdino_boxes,
        font_size=20,
        draw_width=10,
        input_height=input_height,
        input_width=input_width,
    )

    # Create a new image with white background for the combined result
    combined_width = gdino_vis_result.width + ref_vis_result.width
    combined_height = max(gdino_vis_result.height, ref_vis_result.height)
    combined_image = Image.new("RGB", (combined_width, combined_height), "white")

    # Paste the images side by side
    combined_image.paste(gdino_vis_result, (0, 0))
    combined_image.paste(ref_vis_result, (gdino_vis_result.width, 0))

    # Add titles
    draw = ImageDraw.Draw(combined_image)
    font = ImageFont.truetype("tools/Tahoma.ttf", 30)

    # Add Grounding DINO title
    draw.text((10, 10), "Grounding DINO Output", fill="black", font=font)

    # Add Rex-Thinker title
    draw.text(
        (gdino_vis_result.width + 10, 10), "Rex-Thinker Output", fill="black", font=font
    )

    # Save the combined visualization result
    os.makedirs(os.path.dirname(args.vis_path), exist_ok=True)
    combined_image.save(args.vis_path)