Iiro commited on
Commit
23f5344
·
1 Parent(s): bd90b0a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -0
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - amazon_reviews_multi
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: bert_reviews
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: amazon_reviews_multi
17
+ type: amazon_reviews_multi
18
+ config: en
19
+ split: test
20
+ args: en
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.6408
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # bert_reviews
31
+
32
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the amazon_reviews_multi dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.8312
35
+ - Accuracy: 0.6408
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0001
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 16
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - training_steps: 20000
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
66
+ | 1.1326 | 0.04 | 500 | 1.0019 | 0.5832 |
67
+ | 0.9786 | 0.08 | 1000 | 0.9387 | 0.6086 |
68
+ | 0.9481 | 0.12 | 1500 | 0.9117 | 0.6132 |
69
+ | 0.9334 | 0.16 | 2000 | 0.9440 | 0.5744 |
70
+ | 0.9036 | 0.2 | 2500 | 0.9085 | 0.6034 |
71
+ | 0.9065 | 0.24 | 3000 | 0.9250 | 0.5982 |
72
+ | 0.8821 | 0.28 | 3500 | 0.8917 | 0.6232 |
73
+ | 0.9047 | 0.32 | 4000 | 0.8850 | 0.6258 |
74
+ | 0.8838 | 0.36 | 4500 | 0.8814 | 0.6236 |
75
+ | 0.8732 | 0.4 | 5000 | 0.8874 | 0.6198 |
76
+ | 0.8845 | 0.44 | 5500 | 0.8886 | 0.6164 |
77
+ | 0.874 | 0.48 | 6000 | 0.8665 | 0.634 |
78
+ | 0.8693 | 0.52 | 6500 | 0.8985 | 0.6126 |
79
+ | 0.8502 | 0.56 | 7000 | 0.8992 | 0.6248 |
80
+ | 0.8752 | 0.6 | 7500 | 0.8620 | 0.6326 |
81
+ | 0.8477 | 0.64 | 8000 | 0.8586 | 0.6382 |
82
+ | 0.8456 | 0.68 | 8500 | 0.8603 | 0.631 |
83
+ | 0.861 | 0.72 | 9000 | 0.8536 | 0.628 |
84
+ | 0.8605 | 0.76 | 9500 | 0.8478 | 0.6338 |
85
+ | 0.8159 | 0.8 | 10000 | 0.8569 | 0.6324 |
86
+ | 0.8397 | 0.84 | 10500 | 0.8519 | 0.626 |
87
+ | 0.8424 | 0.88 | 11000 | 0.8753 | 0.6302 |
88
+ | 0.8332 | 0.92 | 11500 | 0.8453 | 0.6326 |
89
+ | 0.8286 | 0.96 | 12000 | 0.8334 | 0.6414 |
90
+ | 0.8166 | 1.0 | 12500 | 0.8508 | 0.633 |
91
+ | 0.7656 | 1.04 | 13000 | 0.8393 | 0.646 |
92
+ | 0.749 | 1.08 | 13500 | 0.8339 | 0.643 |
93
+ | 0.7554 | 1.12 | 14000 | 0.8325 | 0.6486 |
94
+ | 0.734 | 1.16 | 14500 | 0.8467 | 0.6524 |
95
+ | 0.7581 | 1.2 | 15000 | 0.8228 | 0.6434 |
96
+ | 0.7413 | 1.24 | 15500 | 0.8339 | 0.6446 |
97
+ | 0.7429 | 1.28 | 16000 | 0.8331 | 0.6448 |
98
+ | 0.7436 | 1.32 | 16500 | 0.8285 | 0.6472 |
99
+ | 0.7343 | 1.36 | 17000 | 0.8381 | 0.6532 |
100
+ | 0.7225 | 1.4 | 17500 | 0.8327 | 0.6476 |
101
+ | 0.7311 | 1.44 | 18000 | 0.8281 | 0.6506 |
102
+ | 0.7298 | 1.48 | 18500 | 0.8324 | 0.6468 |
103
+ | 0.7409 | 1.52 | 19000 | 0.8180 | 0.648 |
104
+ | 0.732 | 1.56 | 19500 | 0.8209 | 0.6464 |
105
+ | 0.7352 | 1.6 | 20000 | 0.8195 | 0.6468 |
106
+
107
+
108
+ ### Framework versions
109
+
110
+ - Transformers 4.28.1
111
+ - Pytorch 2.0.0+cu118
112
+ - Datasets 2.11.0
113
+ - Tokenizers 0.13.3