File size: 8,495 Bytes
a050a18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import sys
from model.trainer import Trainer

sys.path.insert(0, '.')

import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.nn.parallel import gather
import torch.optim.lr_scheduler

import dataset.dataset as myDataLoader
import dataset.Transforms as myTransforms
from model.metric_tool import ConfuseMatrixMeter
from model.utils import BCEDiceLoss, init_seed
from PIL import Image
import os
import time
import numpy as np
from argparse import ArgumentParser
from tqdm import tqdm


@torch.no_grad()
def validate(args, val_loader, model, save_masks=False):
    model.eval()

    # 确保所有BatchNorm层使用全局统计量
    for m in model.modules():
        if isinstance(m, (torch.nn.BatchNorm2d, torch.nn.BatchNorm1d)):
            m.track_running_stats = True
            m.eval()

    salEvalVal = ConfuseMatrixMeter(n_class=2)
    epoch_loss = []

    if save_masks:
        mask_dir = f"{args.savedir}/pred_masks"
        os.makedirs(mask_dir, exist_ok=True)
        print(f"Saving prediction masks to: {mask_dir}")

    pbar = tqdm(enumerate(val_loader), total=len(val_loader), desc="Validating")

    for batch_idx, batched_inputs in pbar:
        img, target = batched_inputs
        # 获取当前batch的所有文件名
        batch_file_names = val_loader.sampler.data_source.file_list[
            batch_idx * args.batch_size : (batch_idx + 1) * args.batch_size
        ]
        
        pre_img = img[:, 0:3]
        post_img = img[:, 3:6]

        if args.onGPU:
            pre_img = pre_img.cuda()
            post_img = post_img.cuda()
            target = target.cuda()

        target = target.float()
        output = model(pre_img, post_img)
        loss = BCEDiceLoss(output, target)
        pred = (output > 0.5).long()

        if save_masks:
            pred_np = pred.cpu().numpy().astype(np.uint8)
            
            print(f"\nDebug - Batch {batch_idx}: {len(batch_file_names)} files, Mask shape: {pred_np.shape}")
            
            try:
                for i in range(pred_np.shape[0]):
                    if i >= len(batch_file_names):  # 防止文件名不足
                        print(f"Warning: Missing filename for mask {i}, using default")
                        base_name = f"batch_{batch_idx}_mask_{i}"
                    else:
                        base_name = os.path.splitext(os.path.basename(batch_file_names[i]))[0]
                    
                    single_mask = pred_np[i, 0]  # 获取(1, 256, 256)中的(256, 256)
                    
                    if single_mask.ndim != 2:
                        raise ValueError(f"Invalid mask shape: {single_mask.shape}")
                    
                    mask_path = f"{mask_dir}/{base_name}_pred.png"
                    Image.fromarray(single_mask * 255).save(mask_path)
                    print(f"Saved: {mask_path}")

            except Exception as e:
                print(f"\nError saving batch {batch_idx}: {str(e)}")
                print(f"Current mask shape: {single_mask.shape if 'single_mask' in locals() else 'N/A'}")
                print(f"Current file: {base_name if 'base_name' in locals() else 'N/A'}")

        if args.onGPU and torch.cuda.device_count() > 1:
            pred = gather(pred, 0, dim=0)

        f1 = salEvalVal.update_cm(pr=pred.cpu().numpy(), gt=target.cpu().numpy())
        epoch_loss.append(loss.item())

        pbar.set_postfix({'Loss': f"{loss.item():.4f}", 'F1': f"{f1:.4f}"})

    average_loss = sum(epoch_loss) / len(epoch_loss)
    scores = salEvalVal.get_scores()
    return average_loss, scores
    
def ValidateSegmentation(args):
    """完整的验证流程主函数"""
    # 初始化设置
    os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id)
    torch.backends.cudnn.benchmark = True
    init_seed(args.seed)  # 固定随机种子保证可重复性

    # 模型路径设置
    args.savedir = os.path.join(args.savedir,
                                f"{args.file_root}_iter_{args.max_steps}_lr_{args.lr}")
    os.makedirs(args.savedir, exist_ok=True)

    # 数据集路径配置
    dataset_mapping = {
        'LEVIR': './levir_cd_256',
        'WHU': './whu_cd_256',
        'CLCD': './clcd_256',
        'SYSU': './sysu_256',
        'OSCD': './oscd_256'
    }
    args.file_root = dataset_mapping.get(args.file_root, args.file_root)

    # 初始化模型
    model = Trainer(args.model_type).float()
    if args.onGPU:
        model = model.cuda()

    # 数据预处理 - 保持与训练时验证集相同的预处理
    mean = [0.406, 0.456, 0.485, 0.406, 0.456, 0.485]
    std = [0.225, 0.224, 0.229, 0.225, 0.224, 0.229]

    valDataset = myTransforms.Compose([
        myTransforms.Normalize(mean=mean, std=std),
        myTransforms.Scale(args.inWidth, args.inHeight),
        myTransforms.ToTensor()
    ])

    # 数据加载
    test_data = myDataLoader.Dataset(file_root=args.file_root, mode="test", transform=valDataset)
    testLoader = torch.utils.data.DataLoader(
        test_data,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=args.num_workers,
        pin_memory=True
    )

    # 日志设置
    logFileLoc = os.path.join(args.savedir, args.logFile)
    logger = open(logFileLoc, 'a' if os.path.exists(logFileLoc) else 'w')
    if not os.path.exists(logFileLoc):
        logger.write("\n%s\t%s\t%s\t%s\t%s\t%s\t%s" %
                     ('Epoch', 'Kappa', 'IoU', 'F1', 'Recall', 'Precision', 'OA'))
    logger.flush()

    # 加载最佳模型
    model_file_name = os.path.join(args.savedir, 'best_model.pth')
    if not os.path.exists(model_file_name):
        raise FileNotFoundError(f"Model file not found: {model_file_name}")

    state_dict = torch.load(model_file_name)
    model.load_state_dict(state_dict)
    print(f"Loaded model from {model_file_name}")

    # 执行验证
    loss_test, score_test = validate(args, testLoader, model, save_masks=args.save_masks)

    # 输出结果
    print("\nTest Results:")
    print(f"Loss: {loss_test:.4f}")
    print(f"Kappa: {score_test['Kappa']:.4f}")
    print(f"IoU: {score_test['IoU']:.4f}")
    print(f"F1: {score_test['F1']:.4f}")
    print(f"Recall: {score_test['recall']:.4f}")
    print(f"Precision: {score_test['precision']:.4f}")
    print(f"OA: {score_test['OA']:.4f}")

    # 记录日志
    logger.write("\n%s\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f" %
                 ('Test', score_test['Kappa'], score_test['IoU'], score_test['F1'],
                  score_test['recall'], score_test['precision'], score_test['OA']))
    logger.close()


if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument('--file_root', default="LEVIR",
                        help='Data directory | LEVIR | WHU | CLCD | SYSU | OSCD')
    parser.add_argument('--inWidth', type=int, default=256, help='Width of input image')
    parser.add_argument('--inHeight', type=int, default=256, help='Height of input image')
    parser.add_argument('--max_steps', type=int, default=80000,
                        help='Max. number of iterations (for path naming)')
    parser.add_argument('--num_workers', type=int, default=4,
                        help='Number of data loading workers')
    parser.add_argument('--model_type', type=str, default='small',
                        help='Model type | tiny | small')
    parser.add_argument('--batch_size', type=int, default=16,
                        help='Batch size for validation')
    parser.add_argument('--lr', type=float, default=2e-4,
                        help='Learning rate (for path naming)')
    parser.add_argument('--seed', type=int, default=16,
                        help='Random seed for reproducibility')
    parser.add_argument('--savedir', default='./results',
                        help='Base directory to save results')
    parser.add_argument('--logFile', default='testLog.txt',
                        help='File to save validation logs')
    parser.add_argument('--onGPU', default=True,
                        type=lambda x: (str(x).lower() == 'true'),
                        help='Run on GPU if True')
    parser.add_argument('--gpu_id', type=int, default=0,
                        help='GPU device id')
    parser.add_argument('--save_masks', action='store_true',
                        help='Save predicted masks to disk')

    args = parser.parse_args()
    print('Validation with args:')
    print(args)

    ValidateSegmentation(args)