File size: 8,495 Bytes
a050a18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import sys
from model.trainer import Trainer
sys.path.insert(0, '.')
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.nn.parallel import gather
import torch.optim.lr_scheduler
import dataset.dataset as myDataLoader
import dataset.Transforms as myTransforms
from model.metric_tool import ConfuseMatrixMeter
from model.utils import BCEDiceLoss, init_seed
from PIL import Image
import os
import time
import numpy as np
from argparse import ArgumentParser
from tqdm import tqdm
@torch.no_grad()
def validate(args, val_loader, model, save_masks=False):
model.eval()
# 确保所有BatchNorm层使用全局统计量
for m in model.modules():
if isinstance(m, (torch.nn.BatchNorm2d, torch.nn.BatchNorm1d)):
m.track_running_stats = True
m.eval()
salEvalVal = ConfuseMatrixMeter(n_class=2)
epoch_loss = []
if save_masks:
mask_dir = f"{args.savedir}/pred_masks"
os.makedirs(mask_dir, exist_ok=True)
print(f"Saving prediction masks to: {mask_dir}")
pbar = tqdm(enumerate(val_loader), total=len(val_loader), desc="Validating")
for batch_idx, batched_inputs in pbar:
img, target = batched_inputs
# 获取当前batch的所有文件名
batch_file_names = val_loader.sampler.data_source.file_list[
batch_idx * args.batch_size : (batch_idx + 1) * args.batch_size
]
pre_img = img[:, 0:3]
post_img = img[:, 3:6]
if args.onGPU:
pre_img = pre_img.cuda()
post_img = post_img.cuda()
target = target.cuda()
target = target.float()
output = model(pre_img, post_img)
loss = BCEDiceLoss(output, target)
pred = (output > 0.5).long()
if save_masks:
pred_np = pred.cpu().numpy().astype(np.uint8)
print(f"\nDebug - Batch {batch_idx}: {len(batch_file_names)} files, Mask shape: {pred_np.shape}")
try:
for i in range(pred_np.shape[0]):
if i >= len(batch_file_names): # 防止文件名不足
print(f"Warning: Missing filename for mask {i}, using default")
base_name = f"batch_{batch_idx}_mask_{i}"
else:
base_name = os.path.splitext(os.path.basename(batch_file_names[i]))[0]
single_mask = pred_np[i, 0] # 获取(1, 256, 256)中的(256, 256)
if single_mask.ndim != 2:
raise ValueError(f"Invalid mask shape: {single_mask.shape}")
mask_path = f"{mask_dir}/{base_name}_pred.png"
Image.fromarray(single_mask * 255).save(mask_path)
print(f"Saved: {mask_path}")
except Exception as e:
print(f"\nError saving batch {batch_idx}: {str(e)}")
print(f"Current mask shape: {single_mask.shape if 'single_mask' in locals() else 'N/A'}")
print(f"Current file: {base_name if 'base_name' in locals() else 'N/A'}")
if args.onGPU and torch.cuda.device_count() > 1:
pred = gather(pred, 0, dim=0)
f1 = salEvalVal.update_cm(pr=pred.cpu().numpy(), gt=target.cpu().numpy())
epoch_loss.append(loss.item())
pbar.set_postfix({'Loss': f"{loss.item():.4f}", 'F1': f"{f1:.4f}"})
average_loss = sum(epoch_loss) / len(epoch_loss)
scores = salEvalVal.get_scores()
return average_loss, scores
def ValidateSegmentation(args):
"""完整的验证流程主函数"""
# 初始化设置
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id)
torch.backends.cudnn.benchmark = True
init_seed(args.seed) # 固定随机种子保证可重复性
# 模型路径设置
args.savedir = os.path.join(args.savedir,
f"{args.file_root}_iter_{args.max_steps}_lr_{args.lr}")
os.makedirs(args.savedir, exist_ok=True)
# 数据集路径配置
dataset_mapping = {
'LEVIR': './levir_cd_256',
'WHU': './whu_cd_256',
'CLCD': './clcd_256',
'SYSU': './sysu_256',
'OSCD': './oscd_256'
}
args.file_root = dataset_mapping.get(args.file_root, args.file_root)
# 初始化模型
model = Trainer(args.model_type).float()
if args.onGPU:
model = model.cuda()
# 数据预处理 - 保持与训练时验证集相同的预处理
mean = [0.406, 0.456, 0.485, 0.406, 0.456, 0.485]
std = [0.225, 0.224, 0.229, 0.225, 0.224, 0.229]
valDataset = myTransforms.Compose([
myTransforms.Normalize(mean=mean, std=std),
myTransforms.Scale(args.inWidth, args.inHeight),
myTransforms.ToTensor()
])
# 数据加载
test_data = myDataLoader.Dataset(file_root=args.file_root, mode="test", transform=valDataset)
testLoader = torch.utils.data.DataLoader(
test_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True
)
# 日志设置
logFileLoc = os.path.join(args.savedir, args.logFile)
logger = open(logFileLoc, 'a' if os.path.exists(logFileLoc) else 'w')
if not os.path.exists(logFileLoc):
logger.write("\n%s\t%s\t%s\t%s\t%s\t%s\t%s" %
('Epoch', 'Kappa', 'IoU', 'F1', 'Recall', 'Precision', 'OA'))
logger.flush()
# 加载最佳模型
model_file_name = os.path.join(args.savedir, 'best_model.pth')
if not os.path.exists(model_file_name):
raise FileNotFoundError(f"Model file not found: {model_file_name}")
state_dict = torch.load(model_file_name)
model.load_state_dict(state_dict)
print(f"Loaded model from {model_file_name}")
# 执行验证
loss_test, score_test = validate(args, testLoader, model, save_masks=args.save_masks)
# 输出结果
print("\nTest Results:")
print(f"Loss: {loss_test:.4f}")
print(f"Kappa: {score_test['Kappa']:.4f}")
print(f"IoU: {score_test['IoU']:.4f}")
print(f"F1: {score_test['F1']:.4f}")
print(f"Recall: {score_test['recall']:.4f}")
print(f"Precision: {score_test['precision']:.4f}")
print(f"OA: {score_test['OA']:.4f}")
# 记录日志
logger.write("\n%s\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f" %
('Test', score_test['Kappa'], score_test['IoU'], score_test['F1'],
score_test['recall'], score_test['precision'], score_test['OA']))
logger.close()
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--file_root', default="LEVIR",
help='Data directory | LEVIR | WHU | CLCD | SYSU | OSCD')
parser.add_argument('--inWidth', type=int, default=256, help='Width of input image')
parser.add_argument('--inHeight', type=int, default=256, help='Height of input image')
parser.add_argument('--max_steps', type=int, default=80000,
help='Max. number of iterations (for path naming)')
parser.add_argument('--num_workers', type=int, default=4,
help='Number of data loading workers')
parser.add_argument('--model_type', type=str, default='small',
help='Model type | tiny | small')
parser.add_argument('--batch_size', type=int, default=16,
help='Batch size for validation')
parser.add_argument('--lr', type=float, default=2e-4,
help='Learning rate (for path naming)')
parser.add_argument('--seed', type=int, default=16,
help='Random seed for reproducibility')
parser.add_argument('--savedir', default='./results',
help='Base directory to save results')
parser.add_argument('--logFile', default='testLog.txt',
help='File to save validation logs')
parser.add_argument('--onGPU', default=True,
type=lambda x: (str(x).lower() == 'true'),
help='Run on GPU if True')
parser.add_argument('--gpu_id', type=int, default=0,
help='GPU device id')
parser.add_argument('--save_masks', action='store_true',
help='Save predicted masks to disk')
args = parser.parse_args()
print('Validation with args:')
print(args)
ValidateSegmentation(args)
|