import os import math import numpy as np import cv2 from torchvision.utils import make_grid from data.colormap import second_colormap def tensor2img(tensor, out_type=np.uint8, min_max=(-1, 1)): ''' Converts a torch Tensor into an image Numpy array Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) ''' tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # clamp tensor = (tensor - min_max[0]) / \ (min_max[1] - min_max[0]) # to range [0,1] n_dim = tensor.dim() if n_dim == 4: n_img = len(tensor) img_np = make_grid(tensor, nrow=int( math.sqrt(n_img)), normalize=False).numpy() img_np = np.transpose(img_np, (1, 2, 0)) # HWC, RGB elif n_dim == 3: img_np = tensor.numpy() img_np = np.transpose(img_np, (1, 2, 0)) # HWC, RGB elif n_dim == 2: img_np = tensor.numpy() else: raise TypeError( 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) if out_type == np.uint8: img_np = (img_np * 255.0).round() # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. return img_np.astype(out_type) def Index2Color(pred, cmap=second_colormap): colormap = np.asarray(cmap, dtype='uint8') x = np.asarray(pred, dtype='int32') return colormap[x, :] def save_img(img, img_path, mode='RGB'): cv2.imwrite(img_path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) # cv2.imwrite(img_path, img) def save_scdimg(img, img_path, mode='RGB'): cv2.imwrite(img_path, cv2.cvtColor(np.squeeze(img, axis=0), cv2.COLOR_RGB2BGR)) def save_feat(img, img_path, mode='RGB'): cv2.imwrite(img_path, cv2.applyColorMap(cv2.resize(img, (256,256), interpolation=cv2.INTER_CUBIC), cv2.COLORMAP_JET)) # cv2.imwrite(img_path, cv2.resize(img, (256,256), interpolation=cv2.INTER_)) # cv2.imwrite(img_path, img) def calculate_psnr(img1, img2): # img1 and img2 have range [0, 255] img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) mse = np.mean((img1 - img2)**2) if mse == 0: return float('inf') return 20 * math.log10(255.0 / math.sqrt(mse)) def ssim(img1, img2): C1 = (0.01 * 255)**2 C2 = (0.03 * 255)**2 img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) kernel = cv2.getGaussianKernel(11, 1.5) window = np.outer(kernel, kernel.transpose()) mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] mu1_sq = mu1**2 mu2_sq = mu2**2 mu1_mu2 = mu1 * mu2 sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) return ssim_map.mean() def calculate_ssim(img1, img2): '''calculate SSIM the same outputs as MATLAB's img1, img2: [0, 255] ''' if not img1.shape == img2.shape: raise ValueError('Input images must have the same dimensions.') if img1.ndim == 2: return ssim(img1, img2) elif img1.ndim == 3: if img1.shape[2] == 3: ssims = [] for i in range(3): ssims.append(ssim(img1, img2)) return np.array(ssims).mean() elif img1.shape[2] == 1: return ssim(np.squeeze(img1), np.squeeze(img2)) else: raise ValueError('Wrong input image dimensions.')