SiriusL commited on
Commit
6c0338b
·
verified ·
1 Parent(s): 8ac16f8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -48
README.md CHANGED
@@ -15,12 +15,25 @@ tags:
15
 
16
  # InfiGUI-G1-7B
17
 
18
- **[📚 Paper](https://arxiv.org/abs/2508.05731)** | **[🌐 Project Page](https://osatlas.github.io/)** | **[💻 Code](https://github.com/InfiXAI/InfiGUI-G1)**
19
-
20
  This repository contains the InfiGUI-G1-7B model from the paper **[InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization](https://arxiv.org/abs/2508.05731)**.
21
 
 
 
 
 
 
 
 
 
 
22
  The model is based on `Qwen2.5-VL-7B-Instruct` and is fine-tuned using our proposed **Adaptive Exploration Policy Optimization (AEPO)** framework. AEPO is a novel reinforcement learning method designed to enhance the model's **semantic alignment** for GUI grounding tasks. It overcomes the exploration bottlenecks of standard RLVR methods by integrating a multi-answer generation strategy with a theoretically-grounded adaptive reward function, enabling more effective and efficient learning for complex GUI interactions.
23
 
 
 
 
 
 
 
24
  ## Quick Start
25
 
26
  ### Installation
@@ -93,7 +106,7 @@ def visualize_points(original_image: Image.Image, points: list,
93
  # Draw circle
94
  circle_radius = 20
95
  draw.ellipse([original_x - circle_radius, original_y - circle_radius,
96
- original_x + circle_radius, original_y + circle_radius],\
97
  fill=(255, 0, 0))
98
 
99
  # Draw label
@@ -127,8 +140,7 @@ def main():
127
 
128
  # Prepare model inputs
129
  instruction = "shuffle play the current playlist"
130
- system_prompt = 'You FIRST think about the reasoning process as an internal monologue and then provide the final answer.
131
- The reasoning process MUST BE enclosed within <think> </think> tags.'
132
  prompt = f'''The screen's resolution is {new_width}x{new_height}.
133
  Locate the UI element(s) for "{instruction}", output the coordinates using JSON format: [{{"point_2d": [x, y]}}, ...]'''
134
 
@@ -167,49 +179,109 @@ if __name__ == "__main__":
167
 
168
  ## Results
169
 
170
- Our InfiGUI-G1 models, trained with the AEPO framework, establish new state-of-the-art results among open-source models across a diverse and challenging set of GUI grounding benchmarks.
171
-
172
- ### MMBench-GUI (L2) Results
173
-
174
- On the comprehensive MMBench-GUI benchmark, which evaluates performance across various platforms and instruction complexities, our InfiGUI-G1 models establish new state-of-the-art results for open-source models in their respective size categories.
175
-
176
- <div align="center">
177
- <img src="https://raw.githubusercontent.com/InfiXAI/InfiGUI-G1/main/assets/results_mmbench-gui.png" width="90%" alt="MMBench-GUI Results">
178
- </div>
179
-
180
- ### ScreenSpot-Pro Results
181
-
182
- On the challenging ScreenSpot-Pro benchmark, designed to test semantic understanding on high-resolution professional software, InfiGUI-G1 demonstrates significant improvements, particularly on icon-based grounding tasks. This highlights AEPO's effectiveness in enhancing semantic alignment by associating abstract visual symbols with their functions.
183
-
184
- <div align="center">
185
- <img src="https://raw.githubusercontent.com/InfiXAI/InfiGUI-G1/main/assets/results_screenspot-pro.png" width="90%" alt="ScreenSpot-Pro Results">
186
- </div>
187
-
188
- ### UI-Vision (Element Grounding) Results
189
-
190
- InfiGUI-G1 shows strong generalization capabilities on the UI-Vision benchmark, which is designed to test robustness across a wide variety of unseen desktop applications. Achieving high performance confirms that our AEPO framework fosters a robust understanding rather than overfitting to the training data.
191
-
192
- <div align="center">
193
- <img src="https://raw.githubusercontent.com/InfiXAI/InfiGUI-G1/main/assets/results_ui-vision.png" width="90%" alt="UI-Vision Results">
194
- </div>
195
-
196
- ### UI-I2E-Bench Results
197
-
198
- To further probe semantic reasoning, we evaluated on UI-I2E-Bench, a benchmark featuring a high proportion of implicit instructions that require reasoning beyond direct text matching. Our model's strong performance underscores AEPO's ability to handle complex, indirect commands.
199
-
200
- <div align="center">
201
- <img src="https://raw.githubusercontent.com/InfiXAI/InfiGUI-G1/main/assets/results_i2e-bench.png" width="90%" alt="UI-I2E-Bench Results">
202
- </div>
203
-
204
- ### ScreenSpot-V2 Results
205
-
206
- On the widely-used ScreenSpot-V2 benchmark, which provides comprehensive coverage across mobile, desktop, and web platforms, InfiGUI-G1 consistently outperforms strong baselines, demonstrating the broad applicability and data efficiency of our approach.
207
-
208
- <div align="center">
209
- <img src="https://raw.githubusercontent.com/InfiXAI/InfiGUI-G1/main/assets/results_screenspot-v2.png" width="90%" alt="ScreenSpot-V2 Results">
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
  </div>
211
 
212
- ## ⚙️ Evaluation
213
 
214
  This section provides instructions for reproducing the evaluation results reported in our paper.
215
 
@@ -294,7 +366,7 @@ python eval/eval.py \
294
 
295
  Evaluation results, including detailed logs and performance metrics, will be saved to the `./output/{model_name}/{benchmark}/` directory.
296
 
297
- ## 📚 Citation Information
298
 
299
  If you find this work useful, we would be grateful if you consider citing the following papers:
300
 
@@ -328,6 +400,6 @@ If you find this work useful, we would be grateful if you consider citing the fo
328
  }
329
  ```
330
 
331
- ## 🙏 Acknowledgements
332
 
333
  We would like to express our gratitude for the following open-source projects: [VERL](https://github.com/volcengine/verl), [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL) and [vLLM](https://github.com/vllm-project/vllm).
 
15
 
16
  # InfiGUI-G1-7B
17
 
 
 
18
  This repository contains the InfiGUI-G1-7B model from the paper **[InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization](https://arxiv.org/abs/2508.05731)**.
19
 
20
+ <p align="left">
21
+ <a href="https://arxiv.org/abs/2508.05731"><img src="https://img.shields.io/badge/arXiv-Preprint-b31b1b?style=flat&logo=arxiv&logoColor=white" alt="arXiv Paper"></a>
22
+ <a href="https://huggingface.co/papers/2508.05731"><img src="https://img.shields.io/badge/HuggingFace-Daily%20Papers-ff9800?style=flat&logo=huggingface" alt="Hugging Face Paper"></a>
23
+ <a href="https://huggingface.co/InfiX-ai/InfiGUI-G1-3B"><img src="https://img.shields.io/badge/Model-InfiGUI--G1--3B-007ec6?style=flat&logo=huggingface" alt="InfiGUI-G1 3B Model"></a>
24
+ <a href="https://github.com/InfiXAI/InfiGUI-G1"><img src="https://img.shields.io/badge/GitHub-Repo-181717?style=flat&logo=github&logoColor=white" alt="GitHub Repo"></a>
25
+ </p>
26
+
27
+ ## Model Description
28
+
29
  The model is based on `Qwen2.5-VL-7B-Instruct` and is fine-tuned using our proposed **Adaptive Exploration Policy Optimization (AEPO)** framework. AEPO is a novel reinforcement learning method designed to enhance the model's **semantic alignment** for GUI grounding tasks. It overcomes the exploration bottlenecks of standard RLVR methods by integrating a multi-answer generation strategy with a theoretically-grounded adaptive reward function, enabling more effective and efficient learning for complex GUI interactions.
30
 
31
+ ## Paper Overview
32
+
33
+ A fundamental challenge for GUI agents is robustly grounding natural language instructions, which requires not only precise **spatial alignment** (locating elements accurately) but also correct **semantic alignment** (identifying the functionally appropriate element). While existing Reinforcement Learning with Verifiable Rewards (RLVR) methods have enhanced spatial precision, they often suffer from inefficient exploration. This "confidence trap" bottlenecks semantic alignment, preventing models from discovering correct actions for difficult semantic associations.
34
+
35
+ To address this critical exploration problem, we introduce **InfiGUI-G1**, a series of models trained with **Adaptive Exploration Policy Optimization (AEPO)**. AEPO overcomes the exploration bottleneck by integrating a **multi-answer generation** strategy to explore a diverse set of candidate actions in a single forward pass. This exploration is guided by a theoretically-grounded **Adaptive Exploration Reward (AER)** function, derived from first principles of efficiency (η=U/C), which provides rich, informative learning signals to dynamically balance exploration and exploitation.
36
+
37
  ## Quick Start
38
 
39
  ### Installation
 
106
  # Draw circle
107
  circle_radius = 20
108
  draw.ellipse([original_x - circle_radius, original_y - circle_radius,
109
+ original_x + circle_radius, original_y + circle_radius],
110
  fill=(255, 0, 0))
111
 
112
  # Draw label
 
140
 
141
  # Prepare model inputs
142
  instruction = "shuffle play the current playlist"
143
+ system_prompt = 'You FIRST think about the reasoning process as an internal monologue and then provide the final answer.\nThe reasoning process MUST BE enclosed within <think> </think> tags.'
 
144
  prompt = f'''The screen's resolution is {new_width}x{new_height}.
145
  Locate the UI element(s) for "{instruction}", output the coordinates using JSON format: [{{"point_2d": [x, y]}}, ...]'''
146
 
 
179
 
180
  ## Results
181
 
182
+ Our InfiGUI-G1 models, trained with the AEPO framework, establish new state-of-the-art results among open-source models across a diverse and challenging set of GUI grounding benchmarks:
183
+
184
+ <div align="left">
185
+ <table style="width: 100%; max-width: 750px; border-collapse: collapse; border-top: 2px solid #212529; border-bottom: 2px solid #212529; font-family: sans-serif;">
186
+ <thead style="background-color: #f8f9fa;">
187
+ <tr style="border-bottom: 1.5px solid #212529;">
188
+ <th style="padding: 12px 10px; text-align: left; width: 24.9%; font-weight: 600; color: #343a40;">Model</th>
189
+ <th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">MMBench-GUI</th>
190
+ <th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">ScreenSpot-v2</th>
191
+ <th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">UI-Vision</th>
192
+ <th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">I2E-Bench</th>
193
+ <th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">ScreenSpot-Pro</th>
194
+ </tr>
195
+ </thead>
196
+ <tbody>
197
+ <tr>
198
+ <td style="padding: 10px; text-align: left;">Qwen2.5-VL-7B</td>
199
+ <td style="padding: 10px; text-align: center;">33.9</td>
200
+ <td style="padding: 10px; text-align: center;">88.8</td>
201
+ <td style="padding: 10px; text-align: center;">0.9</td>
202
+ <td style="padding: 10px; text-align: center;">53.8</td>
203
+ <td style="padding: 10px; text-align: center;">-</td>
204
+ </tr>
205
+ <tr>
206
+ <td style="padding: 10px; text-align: left;">GUI-G²-7B</td>
207
+ <td style="padding: 10px; text-align: center;">-</td>
208
+ <td style="padding: 10px; text-align: center;"><u>93.3</u></td>
209
+ <td style="padding: 10px; text-align: center;">-</td>
210
+ <td style="padding: 10px; text-align: center;">-</td>
211
+ <td style="padding: 10px; text-align: center;">47.5</td>
212
+ </tr>
213
+ <tr>
214
+ <td style="padding: 10px; text-align: left;">UI-TARS-7B</td>
215
+ <td style="padding: 10px; text-align: center;">-</td>
216
+ <td style="padding: 10px; text-align: center;">91.6</td>
217
+ <td style="padding: 10px; text-align: center;">17.6</td>
218
+ <td style="padding: 10px; text-align: center;">61.4</td>
219
+ <td style="padding: 10px; text-align: center;">35.7</td>
220
+ </tr>
221
+ <tr>
222
+ <td style="padding: 10px; text-align: left;">UGround-v1-7B</td>
223
+ <td style="padding: 10px; text-align: center;">65.7</td>
224
+ <td style="padding: 10px; text-align: center;">-</td>
225
+ <td style="padding: 10px; text-align: center;">12.9</td>
226
+ <td style="padding: 10px; text-align: center;">70.3</td>
227
+ <td style="padding: 10px; text-align: center;">-</td>
228
+ </tr>
229
+ <tr>
230
+ <td style="padding: 10px; text-align: left;">UI-TARS-1.5-7B</td>
231
+ <td style="padding: 10px; text-align: center;">64.3</td>
232
+ <td style="padding: 10px; text-align: center;">-</td>
233
+ <td style="padding: 10px; text-align: center;">-</td>
234
+ <td style="padding: 10px; text-align: center;">73.2</td>
235
+ <td style="padding: 10px; text-align: center;"><u>49.6</u></td>
236
+ </tr>
237
+ <tr>
238
+ <td style="padding: 10px; text-align: left;">Qwen2.5-VL-72B</td>
239
+ <td style="padding: 10px; text-align: center;">41.8</td>
240
+ <td style="padding: 10px; text-align: center;">-</td>
241
+ <td style="padding: 10px; text-align: center;">-</td>
242
+ <td style="padding: 10px; text-align: center;">51.4</td>
243
+ <td style="padding: 10px; text-align: center;">-</td>
244
+ </tr>
245
+ <tr>
246
+ <td style="padding: 10px; text-align: left;">UGround-v1-72B</td>
247
+ <td style="padding: 10px; text-align: center;">-</td>
248
+ <td style="padding: 10px; text-align: center;">-</td>
249
+ <td style="padding: 10px; text-align: center;">23.2</td>
250
+ <td style="padding: 10px; text-align: center;"><u>76.3</u></td>
251
+ <td style="padding: 10px; text-align: center;">-</td>
252
+ </tr>
253
+ <tr>
254
+ <td style="padding: 10px; text-align: left;">UI-TARS-72B</td>
255
+ <td style="padding: 10px; text-align: center;"><u>74.3</u></td>
256
+ <td style="padding: 10px; text-align: center;">90.3</td>
257
+ <td style="padding: 10px; text-align: center;"><u>25.5</u></td>
258
+ <td style="padding: 10px; text-align: center;">73.7</td>
259
+ <td style="padding: 10px; text-align: center;">-</td>
260
+ </tr>
261
+ <tr>
262
+ <th colspan="6" style="padding: 10px 12px; text-align: left; font-style: italic; background-color: #f8f9fa; border-top: 1px solid #dee2e6; border-bottom: 1px solid #dee2e6; color: #343a40;">Ours</th>
263
+ </tr>
264
+ <tr style="background-color: #f0f8ff;">
265
+ <td style="padding: 10px; text-align: left;"><b>InfiGUI-G1-7B</b></td>
266
+ <td style="padding: 10px; text-align: center;"><b>80.8</b></td>
267
+ <td style="padding: 10px; text-align: center;"><b>93.5</b></td>
268
+ <td style="padding: 10px; text-align: center;"><b>26.1</b></td>
269
+ <td style="padding: 10px; text-align: center;"><b>77.4</b></td>
270
+ <td style="padding: 10px; text-align: center;"><b>51.9</b></td>
271
+ </tr>
272
+ <tr style="background-color: #f0f8ff;">
273
+ <td style="padding: 10px; text-align: right;"><i>w/ Expl. Success</i></td>
274
+ <td style="padding: 10px; text-align: center;">86.4</td>
275
+ <td style="padding: 10px; text-align: center;">95.6</td>
276
+ <td style="padding: 10px; text-align: center;">34.4</td>
277
+ <td style="padding: 10px; text-align: center;">83.0</td>
278
+ <td style="padding: 10px; text-align: center;">58.0</td>
279
+ </tr>
280
+ </tbody>
281
+ </table>
282
  </div>
283
 
284
+ ## Evaluation
285
 
286
  This section provides instructions for reproducing the evaluation results reported in our paper.
287
 
 
366
 
367
  Evaluation results, including detailed logs and performance metrics, will be saved to the `./output/{model_name}/{benchmark}/` directory.
368
 
369
+ ## Citation Information
370
 
371
  If you find this work useful, we would be grateful if you consider citing the following papers:
372
 
 
400
  }
401
  ```
402
 
403
+ ## Acknowledgements
404
 
405
  We would like to express our gratitude for the following open-source projects: [VERL](https://github.com/volcengine/verl), [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL) and [vLLM](https://github.com/vllm-project/vllm).