wenhuach commited on
Commit
d88e8e7
·
verified ·
1 Parent(s): cf2c297

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
chat_template.jinja ADDED
@@ -0,0 +1,397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {#-
2
+ In addition to the normal inputs of `messages` and `tools`, this template also accepts the
3
+ following kwargs:
4
+ - "builtin_tools": A list, can contain "browser" and/or "python".
5
+ - "model_identity": A string that optionally describes the model identity.
6
+ - "reasoning_effort": A string that describes the reasoning effort, defaults to "medium".
7
+ #}
8
+
9
+ {#- Tool Definition Rendering ============================================== #}
10
+ {%- macro render_typescript_type(param_spec, required_params, is_nullable=false) -%}
11
+ {%- if param_spec.type == "array" -%}
12
+ {%- if param_spec['items'] -%}
13
+ {%- if param_spec['items']['type'] == "string" -%}
14
+ {{- "string[]" }}
15
+ {%- elif param_spec['items']['type'] == "number" -%}
16
+ {{- "number[]" }}
17
+ {%- elif param_spec['items']['type'] == "integer" -%}
18
+ {{- "number[]" }}
19
+ {%- elif param_spec['items']['type'] == "boolean" -%}
20
+ {{- "boolean[]" }}
21
+ {%- else -%}
22
+ {%- set inner_type = render_typescript_type(param_spec['items'], required_params) -%}
23
+ {%- if inner_type == "object | object" or inner_type|length > 50 -%}
24
+ {{- "any[]" }}
25
+ {%- else -%}
26
+ {{- inner_type + "[]" }}
27
+ {%- endif -%}
28
+ {%- endif -%}
29
+ {%- if param_spec.nullable -%}
30
+ {{- " | null" }}
31
+ {%- endif -%}
32
+ {%- else -%}
33
+ {{- "any[]" }}
34
+ {%- if param_spec.nullable -%}
35
+ {{- " | null" }}
36
+ {%- endif -%}
37
+ {%- endif -%}
38
+ {%- elif param_spec.type is defined and param_spec.type is iterable and param_spec.type is not string and param_spec.type is not mapping and param_spec.type[0] is defined -%}
39
+ {#- Handle array of types like ["object", "object"] from Union[dict, list] #}
40
+ {%- if param_spec.type | length > 1 -%}
41
+ {{- param_spec.type | join(" | ") }}
42
+ {%- else -%}
43
+ {{- param_spec.type[0] }}
44
+ {%- endif -%}
45
+ {%- elif param_spec.oneOf -%}
46
+ {#- Handle oneOf schemas - check for complex unions and fallback to any #}
47
+ {%- set has_object_variants = false -%}
48
+ {%- for variant in param_spec.oneOf -%}
49
+ {%- if variant.type == "object" -%}
50
+ {%- set has_object_variants = true -%}
51
+ {%- endif -%}
52
+ {%- endfor -%}
53
+ {%- if has_object_variants and param_spec.oneOf|length > 1 -%}
54
+ {{- "any" }}
55
+ {%- else -%}
56
+ {%- for variant in param_spec.oneOf -%}
57
+ {{- render_typescript_type(variant, required_params) -}}
58
+ {%- if variant.description %}
59
+ {{- "// " + variant.description }}
60
+ {%- endif -%}
61
+ {%- if variant.default is defined %}
62
+ {{ "// default: " + variant.default|tojson }}
63
+ {%- endif -%}
64
+ {%- if not loop.last %}
65
+ {{- " | " }}
66
+ {% endif -%}
67
+ {%- endfor -%}
68
+ {%- endif -%}
69
+ {%- elif param_spec.type == "string" -%}
70
+ {%- if param_spec.enum -%}
71
+ {{- '"' + param_spec.enum|join('" | "') + '"' -}}
72
+ {%- else -%}
73
+ {{- "string" }}
74
+ {%- if param_spec.nullable %}
75
+ {{- " | null" }}
76
+ {%- endif -%}
77
+ {%- endif -%}
78
+ {%- elif param_spec.type == "number" -%}
79
+ {{- "number" }}
80
+ {%- elif param_spec.type == "integer" -%}
81
+ {{- "number" }}
82
+ {%- elif param_spec.type == "boolean" -%}
83
+ {{- "boolean" }}
84
+
85
+ {%- elif param_spec.type == "object" -%}
86
+ {%- if param_spec.properties -%}
87
+ {{- "{
88
+ " }}
89
+ {%- for prop_name, prop_spec in param_spec.properties.items() -%}
90
+ {{- prop_name -}}
91
+ {%- if prop_name not in (param_spec.required or []) -%}
92
+ {{- "?" }}
93
+ {%- endif -%}
94
+ {{- ": " }}
95
+ {{ render_typescript_type(prop_spec, param_spec.required or []) }}
96
+ {%- if not loop.last -%}
97
+ {{-", " }}
98
+ {%- endif -%}
99
+ {%- endfor -%}
100
+ {{- "}" }}
101
+ {%- else -%}
102
+ {{- "object" }}
103
+ {%- endif -%}
104
+ {%- else -%}
105
+ {{- "any" }}
106
+ {%- endif -%}
107
+ {%- endmacro -%}
108
+
109
+ {%- macro render_tool_namespace(namespace_name, tools) -%}
110
+ {{- "## " + namespace_name + "
111
+
112
+ " }}
113
+ {{- "namespace " + namespace_name + " {
114
+
115
+ " }}
116
+ {%- for tool in tools %}
117
+ {%- set tool = tool.function %}
118
+ {{- "// " + tool.description + "
119
+ " }}
120
+ {{- "type "+ tool.name + " = " }}
121
+ {%- if tool.parameters and tool.parameters.properties %}
122
+ {{- "(_: {
123
+ " }}
124
+ {%- for param_name, param_spec in tool.parameters.properties.items() %}
125
+ {%- if param_spec.description %}
126
+ {{- "// " + param_spec.description + "
127
+ " }}
128
+ {%- endif %}
129
+ {{- param_name }}
130
+ {%- if param_name not in (tool.parameters.required or []) -%}
131
+ {{- "?" }}
132
+ {%- endif -%}
133
+ {{- ": " }}
134
+ {{- render_typescript_type(param_spec, tool.parameters.required or []) }}
135
+ {%- if param_spec.default is defined -%}
136
+ {%- if param_spec.enum %}
137
+ {{- ", // default: " + param_spec.default }}
138
+ {%- elif param_spec.oneOf %}
139
+ {{- "// default: " + param_spec.default }}
140
+ {%- else %}
141
+ {{- ", // default: " + param_spec.default|tojson }}
142
+ {%- endif -%}
143
+ {%- endif -%}
144
+ {%- if not loop.last %}
145
+ {{- ",
146
+ " }}
147
+ {%- else %}
148
+ {{- "
149
+ " }}
150
+ {%- endif -%}
151
+ {%- endfor %}
152
+ {{- "}) => any;
153
+
154
+ " }}
155
+ {%- else -%}
156
+ {{- "() => any;
157
+
158
+ " }}
159
+ {%- endif -%}
160
+ {%- endfor %}
161
+ {{- "} // namespace " + namespace_name }}
162
+ {%- endmacro -%}
163
+
164
+ {%- macro render_builtin_tools(browser_tool, python_tool) -%}
165
+ {%- if browser_tool %}
166
+ {{- "## browser
167
+
168
+ " }}
169
+ {{- "// Tool for browsing.
170
+ " }}
171
+ {{- "// The `cursor` appears in brackets before each browsing display: `[{cursor}]`.
172
+ " }}
173
+ {{- "// Cite information from the tool using the following format:
174
+ " }}
175
+ {{- "// `【{cursor}†L{line_start}(-L{line_end})?】`, for example: `【6†L9-L11】` or `【8†L3】`.
176
+ " }}
177
+ {{- "// Do not quote more than 10 words directly from the tool output.
178
+ " }}
179
+ {{- "// sources=web (default: web)
180
+ " }}
181
+ {{- "namespace browser {
182
+
183
+ " }}
184
+ {{- "// Searches for information related to `query` and displays `topn` results.
185
+ " }}
186
+ {{- "type search = (_: {
187
+ " }}
188
+ {{- "query: string,
189
+ " }}
190
+ {{- "topn?: number, // default: 10
191
+ " }}
192
+ {{- "source?: string,
193
+ " }}
194
+ {{- "}) => any;
195
+
196
+ " }}
197
+ {{- "// Opens the link `id` from the page indicated by `cursor` starting at line number `loc`, showing `num_lines` lines.
198
+ " }}
199
+ {{- "// Valid link ids are displayed with the formatting: `【{id}†.*】`.
200
+ " }}
201
+ {{- "// If `cursor` is not provided, the most recent page is implied.
202
+ " }}
203
+ {{- "// If `id` is a string, it is treated as a fully qualified URL associated with `source`.
204
+ " }}
205
+ {{- "// If `loc` is not provided, the viewport will be positioned at the beginning of the document or centered on the most relevant passage, if available.
206
+ " }}
207
+ {{- "// Use this function without `id` to scroll to a new location of an opened page.
208
+ " }}
209
+ {{- "type open = (_: {
210
+ " }}
211
+ {{- "id?: number | string, // default: -1
212
+ " }}
213
+ {{- "cursor?: number, // default: -1
214
+ " }}
215
+ {{- "loc?: number, // default: -1
216
+ " }}
217
+ {{- "num_lines?: number, // default: -1
218
+ " }}
219
+ {{- "view_source?: boolean, // default: false
220
+ " }}
221
+ {{- "source?: string,
222
+ " }}
223
+ {{- "}) => any;
224
+
225
+ " }}
226
+ {{- "// Finds exact matches of `pattern` in the current page, or the page given by `cursor`.
227
+ " }}
228
+ {{- "type find = (_: {
229
+ " }}
230
+ {{- "pattern: string,
231
+ " }}
232
+ {{- "cursor?: number, // default: -1
233
+ " }}
234
+ {{- "}) => any;
235
+
236
+ " }}
237
+ {{- "} // namespace browser
238
+
239
+ " }}
240
+ {%- endif -%}
241
+
242
+ {%- if python_tool %}
243
+ {{- "## python
244
+
245
+ " }}
246
+ {{- "Use this tool to execute Python code in your chain of thought. The code will not be shown to the user. This tool should be used for internal reasoning, but not for code that is intended to be visible to the user (e.g. when creating plots, tables, or files).
247
+
248
+ " }}
249
+ {{- "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 120.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is UNKNOWN. Depends on the cluster.
250
+
251
+ " }}
252
+ {%- endif -%}
253
+ {%- endmacro -%}
254
+
255
+ {#- System Message Construction ============================================ #}
256
+ {%- macro build_system_message() -%}
257
+ {%- if model_identity is not defined %}
258
+ {%- set model_identity = "You are ChatGPT, a large language model trained by OpenAI." %}
259
+ {%- endif %}
260
+ {{- model_identity + "
261
+ " }}
262
+ {{- "Knowledge cutoff: 2024-06
263
+ " }}
264
+ {{- "Current date: " + strftime_now("%Y-%m-%d") + "
265
+
266
+ " }}
267
+ {%- if reasoning_effort is not defined %}
268
+ {%- set reasoning_effort = "medium" %}
269
+ {%- endif %}
270
+ {{- "Reasoning: " + reasoning_effort + "
271
+
272
+ " }}
273
+ {%- if builtin_tools %}
274
+ {{- "# Tools
275
+
276
+ " }}
277
+ {%- set available_builtin_tools = namespace(browser=false, python=false) %}
278
+ {%- for tool in builtin_tools %}
279
+ {%- if tool == "browser" %}
280
+ {%- set available_builtin_tools.browser = true %}
281
+ {%- elif tool == "python" %}
282
+ {%- set available_builtin_tools.python = true %}
283
+ {%- endif %}
284
+ {%- endfor %}
285
+ {{- render_builtin_tools(available_builtin_tools.browser, available_builtin_tools.python) }}
286
+ {%- endif -%}
287
+ {{- "# Valid channels: analysis, commentary, final. Channel must be included for every message." }}
288
+ {%- if tools -%}
289
+ {{- "
290
+ Calls to these tools must go to the commentary channel: 'functions'." }}
291
+ {%- endif -%}
292
+ {%- endmacro -%}
293
+
294
+ {#- Main Template Logic ================================================= #}
295
+ {#- Set defaults #}
296
+
297
+ {#- Render system message #}
298
+ {{- "<|start|>system<|message|>" }}
299
+ {{- build_system_message() }}
300
+ {{- "<|end|>" }}
301
+
302
+ {#- Extract developer message #}
303
+ {%- if messages[0].role == "developer" or messages[0].role == "system" %}
304
+ {%- set developer_message = messages[0].content %}
305
+ {%- set loop_messages = messages[1:] %}
306
+ {%- else %}
307
+ {%- set developer_message = "" %}
308
+ {%- set loop_messages = messages %}
309
+ {%- endif %}
310
+
311
+ {#- Render developer message #}
312
+ {%- if developer_message or tools %}
313
+ {{- "<|start|>developer<|message|>" }}
314
+ {%- if developer_message %}
315
+ {{- "# Instructions
316
+
317
+ " }}
318
+ {{- developer_message }}
319
+ {%- endif %}
320
+ {%- if tools -%}
321
+ {{- "
322
+
323
+ " }}
324
+ {{- "# Tools
325
+
326
+ " }}
327
+ {{- render_tool_namespace("functions", tools) }}
328
+ {%- endif -%}
329
+ {{- "<|end|>" }}
330
+ {%- endif %}
331
+
332
+ {#- Render messages #}
333
+ {%- set last_tool_call = namespace(name=none) %}
334
+ {%- for message in loop_messages -%}
335
+ {#- At this point only assistant/user/tool messages should remain #}
336
+ {%- if message.role == 'assistant' -%}
337
+ {#- Checks to ensure the messages are being passed in the format we expect #}
338
+ {%- if "content" in message %}
339
+ {%- if "<|channel|>analysis<|message|>" in message.content or "<|channel|>final<|message|>" in message.content %}
340
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the content field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
341
+ {%- endif %}
342
+ {%- endif %}
343
+ {%- if "thinking" in message %}
344
+ {%- if "<|channel|>analysis<|message|>" in message.thinking or "<|channel|>final<|message|>" in message.thinking %}
345
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the thinking field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
346
+ {%- endif %}
347
+ {%- endif %}
348
+ {%- if "tool_calls" in message %}
349
+ {#- We assume max 1 tool call per message, and so we infer the tool call name #}
350
+ {#- in "tool" messages from the most recent assistant tool call name #}
351
+ {%- set tool_call = message.tool_calls[0] %}
352
+ {%- if tool_call.function %}
353
+ {%- set tool_call = tool_call.function %}
354
+ {%- endif %}
355
+ {%- if message.content and message.thinking %}
356
+ {{- raise_exception("Cannot pass both content and thinking in an assistant message with tool calls! Put the analysis message in one or the other, but not both.") }}
357
+ {%- elif message.content %}
358
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.content + "<|end|>" }}
359
+ {%- elif message.thinking %}
360
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
361
+ {%- endif %}
362
+ {{- "<|start|>assistant to=" }}
363
+ {{- "functions." + tool_call.name + "<|channel|>commentary " }}
364
+ {{- (tool_call.content_type if tool_call.content_type is defined else "json") + "<|message|>" }}
365
+ {{- tool_call.arguments|tojson }}
366
+ {{- "<|call|>" }}
367
+ {%- set last_tool_call.name = tool_call.name %}
368
+ {%- elif loop.last and not add_generation_prompt %}
369
+ {#- Only render the CoT if the final turn is an assistant turn and add_generation_prompt is false #}
370
+ {#- This is a situation that should only occur in training, never in inference. #}
371
+ {%- if "thinking" in message %}
372
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
373
+ {%- endif %}
374
+ {#- <|return|> indicates the end of generation, but <|end|> does not #}
375
+ {#- <|return|> should never be an input to the model, but we include it as the final token #}
376
+ {#- when training, so the model learns to emit it. #}
377
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|return|>" }}
378
+ {%- else %}
379
+ {#- CoT is dropped during all previous turns, so we never render it for inference #}
380
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|end|>" }}
381
+ {%- set last_tool_call.name = none %}
382
+ {%- endif %}
383
+ {%- elif message.role == 'tool' -%}
384
+ {%- if last_tool_call.name is none %}
385
+ {{- raise_exception("Message has tool role, but there was no previous assistant message with a tool call!") }}
386
+ {%- endif %}
387
+ {{- "<|start|>functions." + last_tool_call.name }}
388
+ {{- " to=assistant<|channel|>commentary<|message|>" + message.content|tojson + "<|end|>" }}
389
+ {%- elif message.role == 'user' -%}
390
+ {{- "<|start|>user<|message|>" + message.content + "<|end|>" }}
391
+ {%- endif -%}
392
+ {%- endfor -%}
393
+
394
+ {#- Generation prompt #}
395
+ {%- if add_generation_prompt -%}
396
+ <|start|>assistant
397
+ {%- endif -%}
config.json ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "GptOssForCausalLM"
4
+ ],
5
+ "attention_bias": true,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoModel": "modeling_gpt_oss.GptOssModel",
9
+ "AutoModelForCausalLM": "modeling_gpt_oss.GptOssForCausalLM"
10
+ },
11
+ "eos_token_id": 200002,
12
+ "experts_per_token": 4,
13
+ "head_dim": 64,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 2880,
16
+ "initial_context_length": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 2880,
19
+ "layer_types": [
20
+ "sliding_attention",
21
+ "full_attention",
22
+ "sliding_attention",
23
+ "full_attention",
24
+ "sliding_attention",
25
+ "full_attention",
26
+ "sliding_attention",
27
+ "full_attention",
28
+ "sliding_attention",
29
+ "full_attention",
30
+ "sliding_attention",
31
+ "full_attention",
32
+ "sliding_attention",
33
+ "full_attention",
34
+ "sliding_attention",
35
+ "full_attention",
36
+ "sliding_attention",
37
+ "full_attention",
38
+ "sliding_attention",
39
+ "full_attention",
40
+ "sliding_attention",
41
+ "full_attention",
42
+ "sliding_attention",
43
+ "full_attention"
44
+ ],
45
+ "max_position_embeddings": 131072,
46
+ "model_type": "gpt_oss",
47
+ "num_attention_heads": 64,
48
+ "num_experts_per_tok": 4,
49
+ "num_hidden_layers": 24,
50
+ "num_key_value_heads": 8,
51
+ "num_local_experts": 32,
52
+ "output_router_logits": false,
53
+ "pad_token_id": 199999,
54
+ "quantization_config": {
55
+ "autoround_version": "0.6.1.dev",
56
+ "bits": 4,
57
+ "data_type": "int",
58
+ "extra_config": {
59
+ "model.layers.0.mlp.router.router": {
60
+ "bits": 16
61
+ },
62
+ "model.layers.0.self_attn.k_proj": {
63
+ "bits": 16
64
+ },
65
+ "model.layers.0.self_attn.o_proj": {
66
+ "bits": 16
67
+ },
68
+ "model.layers.0.self_attn.q_proj": {
69
+ "bits": 16
70
+ },
71
+ "model.layers.0.self_attn.v_proj": {
72
+ "bits": 16
73
+ },
74
+ "model.layers.1.mlp.router.router": {
75
+ "bits": 16
76
+ },
77
+ "model.layers.1.self_attn.k_proj": {
78
+ "bits": 16
79
+ },
80
+ "model.layers.1.self_attn.o_proj": {
81
+ "bits": 16
82
+ },
83
+ "model.layers.1.self_attn.q_proj": {
84
+ "bits": 16
85
+ },
86
+ "model.layers.1.self_attn.v_proj": {
87
+ "bits": 16
88
+ },
89
+ "model.layers.10.mlp.router.router": {
90
+ "bits": 16
91
+ },
92
+ "model.layers.10.self_attn.k_proj": {
93
+ "bits": 16
94
+ },
95
+ "model.layers.10.self_attn.o_proj": {
96
+ "bits": 16
97
+ },
98
+ "model.layers.10.self_attn.q_proj": {
99
+ "bits": 16
100
+ },
101
+ "model.layers.10.self_attn.v_proj": {
102
+ "bits": 16
103
+ },
104
+ "model.layers.11.mlp.router.router": {
105
+ "bits": 16
106
+ },
107
+ "model.layers.11.self_attn.k_proj": {
108
+ "bits": 16
109
+ },
110
+ "model.layers.11.self_attn.o_proj": {
111
+ "bits": 16
112
+ },
113
+ "model.layers.11.self_attn.q_proj": {
114
+ "bits": 16
115
+ },
116
+ "model.layers.11.self_attn.v_proj": {
117
+ "bits": 16
118
+ },
119
+ "model.layers.12.mlp.router.router": {
120
+ "bits": 16
121
+ },
122
+ "model.layers.12.self_attn.k_proj": {
123
+ "bits": 16
124
+ },
125
+ "model.layers.12.self_attn.o_proj": {
126
+ "bits": 16
127
+ },
128
+ "model.layers.12.self_attn.q_proj": {
129
+ "bits": 16
130
+ },
131
+ "model.layers.12.self_attn.v_proj": {
132
+ "bits": 16
133
+ },
134
+ "model.layers.13.mlp.router.router": {
135
+ "bits": 16
136
+ },
137
+ "model.layers.13.self_attn.k_proj": {
138
+ "bits": 16
139
+ },
140
+ "model.layers.13.self_attn.o_proj": {
141
+ "bits": 16
142
+ },
143
+ "model.layers.13.self_attn.q_proj": {
144
+ "bits": 16
145
+ },
146
+ "model.layers.13.self_attn.v_proj": {
147
+ "bits": 16
148
+ },
149
+ "model.layers.14.mlp.router.router": {
150
+ "bits": 16
151
+ },
152
+ "model.layers.14.self_attn.k_proj": {
153
+ "bits": 16
154
+ },
155
+ "model.layers.14.self_attn.o_proj": {
156
+ "bits": 16
157
+ },
158
+ "model.layers.14.self_attn.q_proj": {
159
+ "bits": 16
160
+ },
161
+ "model.layers.14.self_attn.v_proj": {
162
+ "bits": 16
163
+ },
164
+ "model.layers.15.mlp.router.router": {
165
+ "bits": 16
166
+ },
167
+ "model.layers.15.self_attn.k_proj": {
168
+ "bits": 16
169
+ },
170
+ "model.layers.15.self_attn.o_proj": {
171
+ "bits": 16
172
+ },
173
+ "model.layers.15.self_attn.q_proj": {
174
+ "bits": 16
175
+ },
176
+ "model.layers.15.self_attn.v_proj": {
177
+ "bits": 16
178
+ },
179
+ "model.layers.16.mlp.router.router": {
180
+ "bits": 16
181
+ },
182
+ "model.layers.16.self_attn.k_proj": {
183
+ "bits": 16
184
+ },
185
+ "model.layers.16.self_attn.o_proj": {
186
+ "bits": 16
187
+ },
188
+ "model.layers.16.self_attn.q_proj": {
189
+ "bits": 16
190
+ },
191
+ "model.layers.16.self_attn.v_proj": {
192
+ "bits": 16
193
+ },
194
+ "model.layers.17.mlp.router.router": {
195
+ "bits": 16
196
+ },
197
+ "model.layers.17.self_attn.k_proj": {
198
+ "bits": 16
199
+ },
200
+ "model.layers.17.self_attn.o_proj": {
201
+ "bits": 16
202
+ },
203
+ "model.layers.17.self_attn.q_proj": {
204
+ "bits": 16
205
+ },
206
+ "model.layers.17.self_attn.v_proj": {
207
+ "bits": 16
208
+ },
209
+ "model.layers.18.mlp.router.router": {
210
+ "bits": 16
211
+ },
212
+ "model.layers.18.self_attn.k_proj": {
213
+ "bits": 16
214
+ },
215
+ "model.layers.18.self_attn.o_proj": {
216
+ "bits": 16
217
+ },
218
+ "model.layers.18.self_attn.q_proj": {
219
+ "bits": 16
220
+ },
221
+ "model.layers.18.self_attn.v_proj": {
222
+ "bits": 16
223
+ },
224
+ "model.layers.19.mlp.router.router": {
225
+ "bits": 16
226
+ },
227
+ "model.layers.19.self_attn.k_proj": {
228
+ "bits": 16
229
+ },
230
+ "model.layers.19.self_attn.o_proj": {
231
+ "bits": 16
232
+ },
233
+ "model.layers.19.self_attn.q_proj": {
234
+ "bits": 16
235
+ },
236
+ "model.layers.19.self_attn.v_proj": {
237
+ "bits": 16
238
+ },
239
+ "model.layers.2.mlp.router.router": {
240
+ "bits": 16
241
+ },
242
+ "model.layers.2.self_attn.k_proj": {
243
+ "bits": 16
244
+ },
245
+ "model.layers.2.self_attn.o_proj": {
246
+ "bits": 16
247
+ },
248
+ "model.layers.2.self_attn.q_proj": {
249
+ "bits": 16
250
+ },
251
+ "model.layers.2.self_attn.v_proj": {
252
+ "bits": 16
253
+ },
254
+ "model.layers.20.mlp.router.router": {
255
+ "bits": 16
256
+ },
257
+ "model.layers.20.self_attn.k_proj": {
258
+ "bits": 16
259
+ },
260
+ "model.layers.20.self_attn.o_proj": {
261
+ "bits": 16
262
+ },
263
+ "model.layers.20.self_attn.q_proj": {
264
+ "bits": 16
265
+ },
266
+ "model.layers.20.self_attn.v_proj": {
267
+ "bits": 16
268
+ },
269
+ "model.layers.21.mlp.router.router": {
270
+ "bits": 16
271
+ },
272
+ "model.layers.21.self_attn.k_proj": {
273
+ "bits": 16
274
+ },
275
+ "model.layers.21.self_attn.o_proj": {
276
+ "bits": 16
277
+ },
278
+ "model.layers.21.self_attn.q_proj": {
279
+ "bits": 16
280
+ },
281
+ "model.layers.21.self_attn.v_proj": {
282
+ "bits": 16
283
+ },
284
+ "model.layers.22.mlp.router.router": {
285
+ "bits": 16
286
+ },
287
+ "model.layers.22.self_attn.k_proj": {
288
+ "bits": 16
289
+ },
290
+ "model.layers.22.self_attn.o_proj": {
291
+ "bits": 16
292
+ },
293
+ "model.layers.22.self_attn.q_proj": {
294
+ "bits": 16
295
+ },
296
+ "model.layers.22.self_attn.v_proj": {
297
+ "bits": 16
298
+ },
299
+ "model.layers.23.mlp.router.router": {
300
+ "bits": 16
301
+ },
302
+ "model.layers.23.self_attn.k_proj": {
303
+ "bits": 16
304
+ },
305
+ "model.layers.23.self_attn.o_proj": {
306
+ "bits": 16
307
+ },
308
+ "model.layers.23.self_attn.q_proj": {
309
+ "bits": 16
310
+ },
311
+ "model.layers.23.self_attn.v_proj": {
312
+ "bits": 16
313
+ },
314
+ "model.layers.3.mlp.router.router": {
315
+ "bits": 16
316
+ },
317
+ "model.layers.3.self_attn.k_proj": {
318
+ "bits": 16
319
+ },
320
+ "model.layers.3.self_attn.o_proj": {
321
+ "bits": 16
322
+ },
323
+ "model.layers.3.self_attn.q_proj": {
324
+ "bits": 16
325
+ },
326
+ "model.layers.3.self_attn.v_proj": {
327
+ "bits": 16
328
+ },
329
+ "model.layers.4.mlp.router.router": {
330
+ "bits": 16
331
+ },
332
+ "model.layers.4.self_attn.k_proj": {
333
+ "bits": 16
334
+ },
335
+ "model.layers.4.self_attn.o_proj": {
336
+ "bits": 16
337
+ },
338
+ "model.layers.4.self_attn.q_proj": {
339
+ "bits": 16
340
+ },
341
+ "model.layers.4.self_attn.v_proj": {
342
+ "bits": 16
343
+ },
344
+ "model.layers.5.mlp.router.router": {
345
+ "bits": 16
346
+ },
347
+ "model.layers.5.self_attn.k_proj": {
348
+ "bits": 16
349
+ },
350
+ "model.layers.5.self_attn.o_proj": {
351
+ "bits": 16
352
+ },
353
+ "model.layers.5.self_attn.q_proj": {
354
+ "bits": 16
355
+ },
356
+ "model.layers.5.self_attn.v_proj": {
357
+ "bits": 16
358
+ },
359
+ "model.layers.6.mlp.router.router": {
360
+ "bits": 16
361
+ },
362
+ "model.layers.6.self_attn.k_proj": {
363
+ "bits": 16
364
+ },
365
+ "model.layers.6.self_attn.o_proj": {
366
+ "bits": 16
367
+ },
368
+ "model.layers.6.self_attn.q_proj": {
369
+ "bits": 16
370
+ },
371
+ "model.layers.6.self_attn.v_proj": {
372
+ "bits": 16
373
+ },
374
+ "model.layers.7.mlp.router.router": {
375
+ "bits": 16
376
+ },
377
+ "model.layers.7.self_attn.k_proj": {
378
+ "bits": 16
379
+ },
380
+ "model.layers.7.self_attn.o_proj": {
381
+ "bits": 16
382
+ },
383
+ "model.layers.7.self_attn.q_proj": {
384
+ "bits": 16
385
+ },
386
+ "model.layers.7.self_attn.v_proj": {
387
+ "bits": 16
388
+ },
389
+ "model.layers.8.mlp.router.router": {
390
+ "bits": 16
391
+ },
392
+ "model.layers.8.self_attn.k_proj": {
393
+ "bits": 16
394
+ },
395
+ "model.layers.8.self_attn.o_proj": {
396
+ "bits": 16
397
+ },
398
+ "model.layers.8.self_attn.q_proj": {
399
+ "bits": 16
400
+ },
401
+ "model.layers.8.self_attn.v_proj": {
402
+ "bits": 16
403
+ },
404
+ "model.layers.9.mlp.router.router": {
405
+ "bits": 16
406
+ },
407
+ "model.layers.9.self_attn.k_proj": {
408
+ "bits": 16
409
+ },
410
+ "model.layers.9.self_attn.o_proj": {
411
+ "bits": 16
412
+ },
413
+ "model.layers.9.self_attn.q_proj": {
414
+ "bits": 16
415
+ },
416
+ "model.layers.9.self_attn.v_proj": {
417
+ "bits": 16
418
+ }
419
+ },
420
+ "group_size": 128,
421
+ "nsamples": 512,
422
+ "packing_format": "auto_round:auto_gptq",
423
+ "quant_method": "auto-round",
424
+ "sym": true
425
+ },
426
+ "rms_norm_eps": 1e-05,
427
+ "rope_scaling": {
428
+ "beta_fast": 32.0,
429
+ "beta_slow": 1.0,
430
+ "factor": 32.0,
431
+ "original_max_position_embeddings": 4096,
432
+ "rope_type": "yarn",
433
+ "truncate": false
434
+ },
435
+ "rope_theta": 150000,
436
+ "router_aux_loss_coef": 0.9,
437
+ "sliding_window": 128,
438
+ "swiglu_limit": 7.0,
439
+ "tie_word_embeddings": false,
440
+ "torch_dtype": "bfloat16",
441
+ "transformers_version": "4.55.0",
442
+ "use_cache": true,
443
+ "vocab_size": 201088
444
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": 200002,
4
+ "pad_token_id": 199999,
5
+ "transformers_version": "4.55.0"
6
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f33ef6959fa47f5cc284f01604b950539f3ad7bfed26088d9b41393f40872fc8
3
+ size 4998027832
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6b8d50c63cfe36ce7caecc7b3375e846ef94bf52afe1748261528655f9343a2
3
+ size 4998707776
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a014ea3832980752f03a933deb1493c6ac54b999086d0f4395f13b327fadc3b0
3
+ size 3549668544
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_gpt_oss.py ADDED
@@ -0,0 +1,893 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ from typing import Callable, Optional, Union
3
+
4
+ import torch
5
+ from accelerate import init_empty_weights
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from transformers.cache_utils import Cache, DynamicCache
10
+ from transformers.generation import GenerationMixin
11
+ from transformers.integrations.hub_kernels import use_kernel_forward_from_hub
12
+ from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
13
+ from transformers.modeling_layers import GradientCheckpointingLayer
14
+ from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
15
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
16
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
17
+ from transformers.processing_utils import Unpack
18
+ from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
19
+ from transformers.utils.generic import OutputRecorder, check_model_inputs
20
+
21
+ from transformers.configuration_utils import PretrainedConfig, layer_type_validation
22
+ from transformers.modeling_rope_utils import rope_config_validation
23
+
24
+ class GptOssConfig(PretrainedConfig):
25
+ r"""
26
+ This will yield a configuration to that of the BERT
27
+ [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture.
28
+
29
+ """
30
+
31
+ model_type = "gpt_oss"
32
+ base_model_pp_plan = {
33
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
34
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
35
+ "norm": (["hidden_states"], ["hidden_states"]),
36
+ }
37
+ base_model_tp_plan = {
38
+ "layers.*.self_attn.q_proj": "colwise",
39
+ "layers.*.self_attn.k_proj": "colwise",
40
+ "layers.*.self_attn.v_proj": "colwise",
41
+ "layers.*.self_attn.o_proj": "rowwise",
42
+ "layers.*.self_attn.sinks": "local_rowwise",
43
+ "layers.*.mlp.experts": "gather",
44
+ "layers.*.mlp.router": "ep_router",
45
+ "layers.*.mlp.experts.gate_up_proj": "grouped_gemm",
46
+ "layers.*.mlp.experts.gate_up_proj_bias": "grouped_gemm",
47
+ "layers.*.mlp.experts.down_proj": "grouped_gemm",
48
+ "layers.*.mlp.experts.down_proj_bias": "grouped_gemm",
49
+ }
50
+
51
+ def __init__(
52
+ self,
53
+ num_hidden_layers: int = 36,
54
+ num_local_experts: int = 128,
55
+ vocab_size: int = 201088,
56
+ hidden_size: int = 2880,
57
+ intermediate_size: int = 2880,
58
+ head_dim: int = 64,
59
+ num_attention_heads: int = 64,
60
+ num_key_value_heads: int = 8,
61
+ sliding_window: int = 128,
62
+ rope_theta: float = 150000.0,
63
+ tie_word_embeddings=False,
64
+ hidden_act: str = "silu",
65
+ initializer_range: float = 0.02,
66
+ max_position_embeddings=131072,
67
+ rms_norm_eps: float = 1e-5,
68
+ rope_scaling={"rope_type": "yarn", "factor": 32.0, "beta_fast": 32.0, "beta_slow": 1.0, "truncate": False},
69
+ attention_dropout: float = 0.0,
70
+ num_experts_per_tok=4,
71
+ router_aux_loss_coef: float = 0.9,
72
+ output_router_logits=False,
73
+ use_cache=True,
74
+ layer_types=None,
75
+ **kwargs,
76
+ ):
77
+ self.vocab_size = vocab_size
78
+ self.hidden_size = hidden_size
79
+ self.intermediate_size = intermediate_size
80
+ self.num_hidden_layers = num_hidden_layers
81
+ self.num_attention_heads = num_attention_heads
82
+ self.num_local_experts = num_local_experts
83
+ self.sliding_window = sliding_window
84
+ self.num_experts_per_tok = num_experts_per_tok
85
+ # for backward compatibility
86
+ if num_key_value_heads is None:
87
+ num_key_value_heads = num_attention_heads
88
+
89
+ self.num_key_value_heads = num_key_value_heads
90
+ self.hidden_act = hidden_act
91
+ self.initializer_range = initializer_range
92
+ self.rms_norm_eps = rms_norm_eps
93
+ self.rope_theta = rope_theta
94
+ self.rope_scaling = rope_scaling
95
+ self.attention_dropout = attention_dropout
96
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
97
+ self.layer_types = layer_types
98
+ if self.layer_types is None:
99
+ self.layer_types = [
100
+ "sliding_attention" if bool((i + 1) % 2) else "full_attention" for i in range(self.num_hidden_layers)
101
+ ]
102
+ layer_type_validation(self.layer_types)
103
+
104
+ # Validate the correctness of rotary position embeddings parameters
105
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
106
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
107
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
108
+ rope_config_validation(self)
109
+
110
+ self.attention_bias = True
111
+ self.max_position_embeddings = max_position_embeddings
112
+ self.router_aux_loss_coef = router_aux_loss_coef
113
+ self.output_router_logits = output_router_logits
114
+ self.use_cache = use_cache
115
+ super().__init__(
116
+ tie_word_embeddings=tie_word_embeddings,
117
+ **kwargs,
118
+ )
119
+
120
+ @use_kernel_forward_from_hub("RMSNorm")
121
+ class GptOssRMSNorm(nn.Module):
122
+ def __init__(self, hidden_size, eps=1e-6):
123
+ """
124
+ GptOssRMSNorm is equivalent to T5LayerNorm
125
+ """
126
+ super().__init__()
127
+ self.weight = nn.Parameter(torch.ones(hidden_size))
128
+ self.variance_epsilon = eps
129
+
130
+ def forward(self, hidden_states):
131
+ input_dtype = hidden_states.dtype
132
+ hidden_states = hidden_states.to(torch.float32)
133
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
134
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
135
+ return (self.weight * hidden_states).to(input_dtype) # main diff with Llama
136
+
137
+ def extra_repr(self):
138
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
139
+
140
+ #
141
+ # class GptOssExperts(nn.Module):
142
+ # def __init__(self, config):
143
+ # super().__init__()
144
+ # self.intermediate_size = config.intermediate_size
145
+ # self.num_experts = config.num_local_experts
146
+ # self.hidden_size = config.hidden_size
147
+ # self.expert_dim = self.intermediate_size
148
+ # self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
149
+ # self.gate_up_proj_bias = nn.Parameter(torch.empty(self.num_experts, 2 * self.expert_dim))
150
+ # self.down_proj = nn.Parameter(torch.empty((self.num_experts, self.expert_dim, self.hidden_size)))
151
+ # self.down_proj_bias = nn.Parameter(torch.empty(self.num_experts, self.hidden_size))
152
+ # self.alpha = 1.702
153
+ # self.limit = 7.0
154
+ #
155
+ #
156
+ #
157
+ # def forward(self, hidden_states: torch.Tensor, router_indices=None, routing_weights=None) -> torch.Tensor:
158
+ # """
159
+ # When training is is more efficient to just loop over the experts and compute the output for each expert
160
+ # as otherwise the memory would explode.
161
+ #
162
+ # For inference we can sacrifice some memory and compute the output for all experts at once. By repeating the inputs.
163
+ #
164
+ # Args:
165
+ # hidden_states (torch.Tensor): (batch_size, seq_len, hidden_size)
166
+ # selected_experts (torch.Tensor): (batch_size * token_num, top_k)
167
+ # routing_weights (torch.Tensor): (batch_size * token_num, num_experts)
168
+ # Returns:
169
+ # torch.Tensor
170
+ # """
171
+ # batch_size = hidden_states.shape[0]
172
+ # hidden_states = hidden_states.reshape(-1, self.hidden_size) # (num_tokens, hidden_size)
173
+ # num_experts = routing_weights.shape[1]
174
+ # if self.training:
175
+ # next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device)
176
+ # with torch.no_grad():
177
+ # expert_mask = torch.nn.functional.one_hot(router_indices, num_classes=num_experts)
178
+ # expert_mask = expert_mask.permute(2, 1, 0)
179
+ # # we sum on the top_k and on the sequence lenght to get which experts
180
+ # # are hit this time around
181
+ # expert_hitted = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
182
+ # for expert_idx in expert_hitted[:]:
183
+ # with torch.no_grad():
184
+ # _, token_idx = torch.where(expert_mask[expert_idx[0]])
185
+ # current_state = hidden_states[token_idx]
186
+ # gate_up = current_state @ self.gate_up_proj[expert_idx] + self.gate_up_proj_bias[expert_idx]
187
+ # gate, up = gate_up[..., ::2], gate_up[..., 1::2]
188
+ # gate = gate.clamp(min=None, max=self.limit)
189
+ # up = up.clamp(min=-self.limit, max=self.limit)
190
+ # glu = gate * torch.sigmoid(gate * self.alpha)
191
+ # gated_output = (up + 1) * glu
192
+ # out = gated_output @ self.down_proj[expert_idx] + self.down_proj_bias[expert_idx]
193
+ # weighted_output = out[0] * routing_weights[token_idx, expert_idx, None]
194
+ # next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype))
195
+ # next_states = next_states.view(batch_size, -1, self.hidden_size)
196
+ # else:
197
+ # hidden_states = hidden_states.repeat(num_experts, 1)
198
+ # hidden_states = hidden_states.view(num_experts, -1, self.hidden_size)
199
+ # gate_up = torch.bmm(hidden_states, self.gate_up_proj) + self.gate_up_proj_bias[..., None, :]
200
+ # gate, up = gate_up[..., ::2], gate_up[..., 1::2]
201
+ # gate = gate.clamp(min=None, max=self.limit)
202
+ # up = up.clamp(min=-self.limit, max=self.limit)
203
+ # glu = gate * torch.sigmoid(gate * self.alpha)
204
+ # next_states = torch.bmm(((up + 1) * glu), self.down_proj)
205
+ # next_states = next_states + self.down_proj_bias[..., None, :]
206
+ # next_states = next_states.view(num_experts, batch_size, -1, self.hidden_size)
207
+ # next_states = next_states * routing_weights.transpose(0, 1).view(num_experts, batch_size, -1)[..., None]
208
+ # next_states = next_states.sum(dim=0)
209
+ # return next_states
210
+
211
+ class GptOssExperts(nn.Module):
212
+ def __init__(self, config):
213
+ super().__init__()
214
+ self.intermediate_size = config.intermediate_size
215
+ self.num_experts = config.num_local_experts
216
+ self.hidden_size = config.hidden_size
217
+ self.expert_dim = self.intermediate_size
218
+
219
+ # 使用nn.Linear替代手动矩阵乘法
220
+ self.gate_up_projs = nn.ModuleList([
221
+ nn.Linear(self.hidden_size, 2 * self.expert_dim)
222
+ for _ in range(self.num_experts)
223
+ ])
224
+
225
+ self.down_projs = nn.ModuleList([
226
+ nn.Linear(self.expert_dim, self.hidden_size)
227
+ for _ in range(self.num_experts)
228
+ ])
229
+
230
+ self.alpha = 1.702
231
+ self.limit = 7.0
232
+
233
+ def forward(self, hidden_states: torch.Tensor, router_indices=None, routing_weights=None) -> torch.Tensor:
234
+ batch_size = hidden_states.shape[0]
235
+ hidden_states = hidden_states.reshape(-1, self.hidden_size) # (num_tokens, hidden_size)
236
+ num_experts = routing_weights.shape[1]
237
+
238
+ if self.training:
239
+ next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device)
240
+
241
+ with torch.no_grad():
242
+ expert_mask = torch.nn.functional.one_hot(router_indices, num_classes=num_experts)
243
+ expert_mask = expert_mask.permute(2, 1, 0)
244
+ expert_hitted = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
245
+
246
+ for expert_idx in expert_hitted[:]:
247
+ with torch.no_grad():
248
+ _, token_idx = torch.where(expert_mask[expert_idx[0]])
249
+
250
+ current_state = hidden_states[token_idx]
251
+
252
+ # 使用Linear层替代手动矩阵乘法
253
+ gate_up = self.gate_up_projs[expert_idx](current_state)
254
+ gate, up = gate_up[..., ::2], gate_up[..., 1::2]
255
+ gate = gate.clamp(min=None, max=self.limit)
256
+ up = up.clamp(min=-self.limit, max=self.limit)
257
+
258
+ glu = gate * torch.sigmoid(gate * self.alpha)
259
+ gated_output = (up + 1) * glu
260
+
261
+ # 使用Linear层替代手动矩阵乘法
262
+ out = self.down_projs[expert_idx](gated_output)
263
+
264
+ weighted_output = out[0] * routing_weights[token_idx, expert_idx, None]
265
+ next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype))
266
+
267
+ next_states = next_states.view(batch_size, -1, self.hidden_size)
268
+ else:
269
+ hidden_states = hidden_states.repeat(num_experts, 1)
270
+ hidden_states = hidden_states.view(num_experts, -1, self.hidden_size)
271
+
272
+ # 批量处理所有专家
273
+ gate_up = torch.stack([proj(hidden_states[i]) for i, proj in enumerate(self.gate_up_projs)])
274
+ gate, up = gate_up[..., ::2], gate_up[..., 1::2]
275
+ gate = gate.clamp(min=None, max=self.limit)
276
+ up = up.clamp(min=-self.limit, max=self.limit)
277
+
278
+ glu = gate * torch.sigmoid(gate * self.alpha)
279
+ next_states = torch.stack([proj((up[i] + 1) * glu[i]) for i, proj in enumerate(self.down_projs)])
280
+
281
+ next_states = next_states.view(num_experts, batch_size, -1, self.hidden_size)
282
+ next_states = next_states * routing_weights.transpose(0, 1).view(num_experts, batch_size, -1)[..., None]
283
+ next_states = next_states.sum(dim=0)
284
+
285
+ return next_states
286
+
287
+ # class GptOssTopKRouter(nn.Module):
288
+ # def __init__(self, config):
289
+ # super().__init__()
290
+ # self.top_k = config.num_experts_per_tok
291
+ # self.num_experts = config.num_local_experts
292
+ # self.hidden_dim = config.hidden_size
293
+ # self.weight = nn.Parameter(torch.empty(self.num_experts, self.hidden_dim))
294
+ # self.bias = nn.Parameter(torch.empty(self.num_experts))
295
+ #
296
+ # def forward(self, hidden_states):
297
+ # hidden_states = hidden_states.reshape(-1, self.hidden_dim)
298
+ # router_logits = F.linear(hidden_states, self.weight, self.bias) # (seq_len, num_experts)
299
+ # router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=-1) # (seq_len, top_k)
300
+ # router_top_value = torch.nn.functional.softmax(router_top_value, dim=1, dtype=router_top_value.dtype)
301
+ # router_scores = torch.zeros_like(router_logits).scatter_(1, router_indices, router_top_value)
302
+ # return router_scores, router_indices
303
+
304
+
305
+ class GptOssTopKRouter(nn.Module):
306
+ def __init__(self, config):
307
+ super().__init__()
308
+ self.top_k = config.num_experts_per_tok
309
+ self.num_experts = config.num_local_experts
310
+ self.hidden_dim = config.hidden_size
311
+
312
+ # 使用nn.Linear替代手动参数
313
+ self.router = nn.Linear(self.hidden_dim, self.num_experts)
314
+
315
+ def forward(self, hidden_states):
316
+ # 展平输入 (batch_size * seq_len, hidden_dim)
317
+ hidden_states = hidden_states.reshape(-1, self.hidden_dim)
318
+ router_logits = self.router(hidden_states) # (num_tokens, num_experts)
319
+
320
+ router_top_value, router_indices = torch.topk(
321
+ router_logits,
322
+ self.top_k,
323
+ dim=-1
324
+ ) # (num_tokens, top_k)
325
+
326
+ router_top_value = F.softmax(router_top_value, dim=-1, dtype=router_top_value.dtype)
327
+
328
+ router_scores = torch.zeros_like(router_logits).scatter_(
329
+ dim=1,
330
+ index=router_indices,
331
+ src=router_top_value
332
+ )
333
+
334
+ return router_scores, router_indices
335
+
336
+
337
+
338
+
339
+ @use_kernel_forward_from_hub("MegaBlocksMoeMLP")
340
+ class GptOssMLP(nn.Module):
341
+ def __init__(self, config):
342
+ super().__init__()
343
+ self.router = GptOssTopKRouter(config)
344
+ self.experts = GptOssExperts(config)
345
+
346
+ def forward(self, hidden_states):
347
+ router_scores, router_indices = self.router(hidden_states) # (num_experts, seq_len)
348
+ routed_out = self.experts(hidden_states, router_indices=router_indices, routing_weights=router_scores)
349
+ return routed_out, router_scores
350
+
351
+
352
+ class GptOssRotaryEmbedding(nn.Module):
353
+ def __init__(self, config: GptOssConfig, device=None):
354
+ super().__init__()
355
+ # BC: "rope_type" was originally "type"
356
+ if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
357
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
358
+ else:
359
+ self.rope_type = "default"
360
+ self.max_seq_len_cached = config.max_position_embeddings
361
+ self.original_max_seq_len = config.max_position_embeddings
362
+
363
+ self.config = config
364
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
365
+
366
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
367
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
368
+ self.original_inv_freq = self.inv_freq
369
+
370
+ @torch.no_grad()
371
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
372
+ def forward(self, x, position_ids):
373
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
374
+ position_ids_expanded = position_ids[:, None, :].float()
375
+
376
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
377
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
378
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
379
+ emb = freqs
380
+ cos = emb.cos() * self.attention_scaling
381
+ sin = emb.sin() * self.attention_scaling
382
+
383
+ return cos.to(x.dtype), sin.to(x.dtype)
384
+
385
+
386
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
387
+ """
388
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
389
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
390
+ """
391
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
392
+ if n_rep == 1:
393
+ return hidden_states
394
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
395
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
396
+
397
+
398
+ def _apply_rotary_emb(
399
+ x: torch.Tensor,
400
+ cos: torch.Tensor,
401
+ sin: torch.Tensor,
402
+ ) -> torch.Tensor:
403
+ first_half, second_half = torch.chunk(x, 2, dim=-1)
404
+ first_ = first_half * cos - second_half * sin
405
+ second_ = second_half * cos + first_half * sin
406
+ return torch.cat((first_, second_), dim=-1)
407
+
408
+
409
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
410
+ cos = cos.unsqueeze(unsqueeze_dim)
411
+ sin = sin.unsqueeze(unsqueeze_dim)
412
+ q_embed = _apply_rotary_emb(q, cos, sin)
413
+ k_embed = _apply_rotary_emb(k, cos, sin)
414
+ return q_embed, k_embed
415
+
416
+
417
+ def eager_attention_forward(
418
+ module: nn.Module,
419
+ query: torch.Tensor,
420
+ key: torch.Tensor,
421
+ value: torch.Tensor,
422
+ attention_mask: Optional[torch.Tensor],
423
+ scaling: float,
424
+ dropout: float = 0.0,
425
+ **kwargs,
426
+ ):
427
+ key_states = repeat_kv(key, module.num_key_value_groups)
428
+ value_states = repeat_kv(value, module.num_key_value_groups)
429
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
430
+ if attention_mask is not None:
431
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
432
+ attn_weights = attn_weights + causal_mask
433
+
434
+ sinks = module.sinks.reshape(1, -1, 1, 1).expand(query.shape[0], -1, query.shape[-2], -1)
435
+ combined_logits = torch.cat([attn_weights, sinks], dim=-1)
436
+
437
+ # This was not in the original implementation and slightly affect results; it prevents overflow in BF16/FP16
438
+ # when training with bsz>1 we clamp max values.
439
+
440
+ combined_logits = combined_logits - combined_logits.max(dim=-1, keepdim=True).values
441
+ probs = F.softmax(combined_logits, dim=-1, dtype=combined_logits.dtype)
442
+ scores = probs[..., :-1] # we drop the sink here
443
+ attn_weights = nn.functional.dropout(scores, p=dropout, training=module.training)
444
+ attn_output = torch.matmul(attn_weights, value_states)
445
+ attn_output = attn_output.transpose(1, 2).contiguous()
446
+ return attn_output, attn_weights
447
+
448
+
449
+ class GptOssAttention(nn.Module):
450
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
451
+
452
+ def __init__(self, config: GptOssConfig, layer_idx: int):
453
+ super().__init__()
454
+ self.config = config
455
+ self.layer_idx = layer_idx
456
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
457
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
458
+ self.scaling = self.head_dim**-0.5
459
+ self.attention_dropout = config.attention_dropout
460
+ self.is_causal = True
461
+ self.q_proj = nn.Linear(
462
+ config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
463
+ )
464
+ self.k_proj = nn.Linear(
465
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
466
+ )
467
+ self.v_proj = nn.Linear(
468
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
469
+ )
470
+ self.o_proj = nn.Linear(
471
+ config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
472
+ )
473
+ self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
474
+ self.sinks = nn.Parameter(torch.empty(config.num_attention_heads))
475
+
476
+ def forward(
477
+ self,
478
+ hidden_states: torch.Tensor,
479
+ position_embeddings: tuple[torch.Tensor, torch.Tensor],
480
+ attention_mask: Optional[torch.Tensor],
481
+ past_key_value: Optional[Cache] = None,
482
+ cache_position: Optional[torch.LongTensor] = None,
483
+ **kwargs: Unpack[TransformersKwargs],
484
+ ) -> tuple[torch.Tensor, torch.Tensor]:
485
+ input_shape = hidden_states.shape[:-1]
486
+ hidden_shape = (*input_shape, -1, self.head_dim)
487
+
488
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
489
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
490
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
491
+
492
+ cos, sin = position_embeddings
493
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
494
+
495
+ if past_key_value is not None:
496
+ cache_kwargs = {"cache_position": cache_position}
497
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
498
+
499
+ attention_interface: Callable = eager_attention_forward
500
+ if self.config._attn_implementation != "eager":
501
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
502
+
503
+ attn_output, attn_weights = attention_interface(
504
+ self,
505
+ query_states,
506
+ key_states,
507
+ value_states,
508
+ attention_mask,
509
+ dropout=0.0 if not self.training else self.attention_dropout,
510
+ scaling=self.scaling,
511
+ sliding_window=self.sliding_window,
512
+ s_aux=self.sinks, # diff with Llama
513
+ **kwargs,
514
+ )
515
+
516
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
517
+ attn_output = self.o_proj(attn_output)
518
+ return attn_output, attn_weights
519
+
520
+
521
+ class GptOssDecoderLayer(GradientCheckpointingLayer):
522
+ def __init__(self, config: GptOssConfig, layer_idx: int):
523
+ super().__init__()
524
+ self.hidden_size = config.hidden_size
525
+ self.self_attn = GptOssAttention(config=config, layer_idx=layer_idx)
526
+ self.mlp = GptOssMLP(config)
527
+ self.input_layernorm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
528
+ self.post_attention_layernorm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
529
+ self.attention_type = config.layer_types[layer_idx]
530
+
531
+ def forward(
532
+ self,
533
+ hidden_states: torch.Tensor,
534
+ attention_mask: Optional[torch.Tensor] = None,
535
+ position_ids: Optional[torch.LongTensor] = None,
536
+ past_key_value: Optional[Cache] = None,
537
+ use_cache: Optional[bool] = False,
538
+ cache_position: Optional[torch.LongTensor] = None,
539
+ position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
540
+ **kwargs: Unpack[TransformersKwargs],
541
+ ) -> tuple[torch.Tensor]:
542
+ residual = hidden_states
543
+ hidden_states = self.input_layernorm(hidden_states)
544
+ # Self Attention
545
+ hidden_states, _ = self.self_attn(
546
+ hidden_states=hidden_states,
547
+ attention_mask=attention_mask,
548
+ position_ids=position_ids,
549
+ past_key_value=past_key_value,
550
+ use_cache=use_cache,
551
+ cache_position=cache_position,
552
+ position_embeddings=position_embeddings,
553
+ **kwargs,
554
+ )
555
+ hidden_states = residual + hidden_states
556
+
557
+ # Fully Connected
558
+ residual = hidden_states
559
+ hidden_states = self.post_attention_layernorm(hidden_states)
560
+ hidden_states, _ = self.mlp(hidden_states) # diff with llama: router scores
561
+ hidden_states = residual + hidden_states
562
+ return hidden_states
563
+
564
+
565
+ @auto_docstring
566
+ class GptOssPreTrainedModel(PreTrainedModel):
567
+ config: GptOssConfig
568
+ base_model_prefix = "model"
569
+ supports_gradient_checkpointing = True
570
+ _no_split_modules = ["GptOssDecoderLayer"]
571
+ _skip_keys_device_placement = ["past_key_values"]
572
+ _supports_flash_attn = True
573
+ _supports_sdpa = False
574
+ _supports_flex_attn = True
575
+
576
+ _can_compile_fullgraph = True
577
+ _supports_attention_backend = True
578
+ _can_record_outputs = {
579
+ "router_logits": OutputRecorder(GptOssTopKRouter, index=0),
580
+ "hidden_states": GptOssDecoderLayer,
581
+ "attentions": GptOssAttention,
582
+ }
583
+ _keep_in_fp32_modules = ["post_attention_layernorm", "input_layernorm", "norm"]
584
+ _supports_flash_attention = False
585
+ _supports_flex_attention = False
586
+
587
+ def _init_weights(self, module):
588
+ std = self.config.initializer_range
589
+ if isinstance(module, nn.Linear):
590
+ module.weight.data.normal_(mean=0.0, std=std)
591
+ if module.bias is not None:
592
+ module.bias.data.zero_()
593
+ elif isinstance(module, nn.Parameter):
594
+ module.data.normal_(mean=0.0, std=std)
595
+ elif isinstance(module, nn.Embedding):
596
+ module.weight.data.normal_(mean=0.0, std=std)
597
+ if module.padding_idx is not None:
598
+ module.weight.data[module.padding_idx].zero_()
599
+ elif isinstance(module, GptOssRMSNorm):
600
+ module.weight.data.fill_(1.0)
601
+ # elif isinstance(module, GptOssExperts):##too slow
602
+ # for gate_up_proj in module.gate_up_projs:
603
+ # gate_up_proj.weight.normal_(mean=0.0, std=std)
604
+ # gate_up_proj.bias.data.zero_()
605
+ # for down_proj in module.down_projs:
606
+ # down_proj.weight.data.normal_(mean=0.0, std=std)
607
+ # down_proj.bias.data.zero_()
608
+ elif isinstance(module, GptOssAttention):
609
+ module.sinks.data.normal_(mean=0.0, std=std)
610
+ # elif isinstance(module, GptOssTopKRouter):
611
+ # module.weight.data.normal_(mean=0.0, std=std)
612
+ # module.bias.data.normal_(mean=0.0, std=std)
613
+
614
+
615
+ @auto_docstring
616
+ class GptOssModel(GptOssPreTrainedModel):
617
+ _no_split_modules = ["GptOssDecoderLayer"]
618
+
619
+ def __init__(self, config: GptOssConfig):
620
+ super().__init__(config)
621
+ self.padding_idx = config.pad_token_id
622
+ self.vocab_size = config.vocab_size
623
+
624
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
625
+ self.layers = nn.ModuleList(
626
+ [GptOssDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
627
+ )
628
+ self.norm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
629
+ self.rotary_emb = GptOssRotaryEmbedding(config=config)
630
+ self.gradient_checkpointing = False
631
+
632
+ # Initialize weights and apply final processing
633
+ self.post_init()
634
+
635
+ @check_model_inputs
636
+ @auto_docstring
637
+ def forward(
638
+ self,
639
+ input_ids: Optional[torch.LongTensor] = None,
640
+ attention_mask: Optional[torch.Tensor] = None,
641
+ position_ids: Optional[torch.LongTensor] = None,
642
+ past_key_values: Optional[list[torch.FloatTensor]] = None,
643
+ inputs_embeds: Optional[torch.FloatTensor] = None,
644
+ use_cache: Optional[bool] = None,
645
+ cache_position: Optional[torch.LongTensor] = None,
646
+ **kwargs: Unpack[TransformersKwargs],
647
+ ) -> MoeModelOutputWithPast:
648
+ if (input_ids is None) ^ (inputs_embeds is not None):
649
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
650
+
651
+ if use_cache and past_key_values is None:
652
+ past_key_values = DynamicCache()
653
+
654
+ if inputs_embeds is None:
655
+ inputs_embeds = self.embed_tokens(input_ids)
656
+
657
+ if cache_position is None:
658
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
659
+ cache_position = torch.arange(
660
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
661
+ )
662
+ if position_ids is None:
663
+ position_ids = cache_position.unsqueeze(0)
664
+
665
+ # It may already have been prepared by e.g. `generate`
666
+ if not isinstance(causal_mask_mapping := attention_mask, dict):
667
+ mask_kwargs = {
668
+ "config": self.config,
669
+ "input_embeds": inputs_embeds,
670
+ "attention_mask": attention_mask,
671
+ "cache_position": cache_position,
672
+ "past_key_values": past_key_values,
673
+ }
674
+ causal_mask_mapping = {
675
+ "full_attention": create_causal_mask(**mask_kwargs),
676
+ "sliding_attention": create_sliding_window_causal_mask(**mask_kwargs),
677
+ }
678
+
679
+ hidden_states = inputs_embeds
680
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
681
+
682
+ for decoder_layer in self.layers:
683
+ hidden_states = decoder_layer(
684
+ hidden_states,
685
+ attention_mask=causal_mask_mapping[decoder_layer.attention_type],
686
+ position_ids=position_ids,
687
+ past_key_value=past_key_values,
688
+ use_cache=use_cache,
689
+ cache_position=cache_position,
690
+ position_embeddings=position_embeddings,
691
+ **kwargs,
692
+ )
693
+ hidden_states = self.norm(hidden_states)
694
+ return MoeModelOutputWithPast(
695
+ last_hidden_state=hidden_states,
696
+ past_key_values=past_key_values,
697
+ )
698
+
699
+
700
+ def load_balancing_loss_func(
701
+ gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
702
+ num_experts: Optional[int] = None,
703
+ top_k=2,
704
+ attention_mask: Optional[torch.Tensor] = None,
705
+ ) -> Union[torch.Tensor, int]:
706
+ r"""
707
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
708
+
709
+ See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss
710
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
711
+ experts is too unbalanced.
712
+
713
+ Args:
714
+ gate_logits:
715
+ Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
716
+ shape [batch_size X sequence_length, num_experts].
717
+ num_experts:
718
+ Number of experts
719
+ top_k:
720
+ The number of experts to route per-token, can be also interpreted as the `top-k` routing
721
+ parameter.
722
+ attention_mask (`torch.Tensor`, *optional*):
723
+ The attention_mask used in forward function
724
+ shape [batch_size X sequence_length] if not None.
725
+
726
+ Returns:
727
+ The auxiliary loss.
728
+ """
729
+ if gate_logits is None or not isinstance(gate_logits, tuple):
730
+ return 0
731
+
732
+ if isinstance(gate_logits, tuple):
733
+ compute_device = gate_logits[0].device
734
+ concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
735
+
736
+ routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
737
+
738
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
739
+
740
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
741
+
742
+ if attention_mask is None:
743
+ # Compute the percentage of tokens routed to each experts
744
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
745
+
746
+ # Compute the average probability of routing to these experts
747
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
748
+ else:
749
+ batch_size, sequence_length = attention_mask.shape
750
+ num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
751
+
752
+ # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
753
+ expert_attention_mask = (
754
+ attention_mask[None, :, :, None, None]
755
+ .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
756
+ .reshape(-1, top_k, num_experts)
757
+ .to(compute_device)
758
+ )
759
+
760
+ # Compute the percentage of tokens routed to each experts
761
+ tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
762
+ expert_attention_mask, dim=0
763
+ )
764
+
765
+ # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
766
+ router_per_expert_attention_mask = (
767
+ attention_mask[None, :, :, None]
768
+ .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
769
+ .reshape(-1, num_experts)
770
+ .to(compute_device)
771
+ )
772
+
773
+ # Compute the average probability of routing to these experts
774
+ router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
775
+ router_per_expert_attention_mask, dim=0
776
+ )
777
+
778
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
779
+ return overall_loss * num_experts
780
+
781
+
782
+ @auto_docstring
783
+ class GptOssForCausalLM(GptOssPreTrainedModel, GenerationMixin):
784
+ _tied_weights_keys = ["lm_head.weight"]
785
+ _tp_plan = {"lm_head": "colwise_rep"}
786
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
787
+
788
+ def __init__(self, config):
789
+ super().__init__(config)
790
+ self.model = GptOssModel(config)
791
+ self.vocab_size = config.vocab_size
792
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
793
+ self.router_aux_loss_coef = config.router_aux_loss_coef
794
+ self.num_experts = config.num_local_experts
795
+ self.num_experts_per_tok = config.num_experts_per_tok
796
+
797
+ # Initialize weights and apply final processing
798
+ self.post_init()
799
+
800
+ def set_decoder(self, decoder):
801
+ self.model = decoder
802
+
803
+ def get_decoder(self):
804
+ return self.model
805
+
806
+ @can_return_tuple
807
+ @auto_docstring
808
+ def forward(
809
+ self,
810
+ input_ids: Optional[torch.LongTensor] = None,
811
+ attention_mask: Optional[torch.Tensor] = None,
812
+ position_ids: Optional[torch.LongTensor] = None,
813
+ past_key_values: Optional[Cache] = None,
814
+ inputs_embeds: Optional[torch.FloatTensor] = None,
815
+ labels: Optional[torch.LongTensor] = None,
816
+ use_cache: Optional[bool] = None,
817
+ output_router_logits: Optional[bool] = None,
818
+ cache_position: Optional[torch.LongTensor] = None,
819
+ logits_to_keep: Union[int, torch.Tensor] = 0,
820
+ **kwargs: Unpack[TransformersKwargs],
821
+ ) -> MoeCausalLMOutputWithPast:
822
+ r"""
823
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
824
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
825
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
826
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
827
+
828
+ Example:
829
+
830
+ ```python
831
+ >>> from transformers import AutoTokenizer, GptOssForCausalLM
832
+
833
+ >>> model = GptOssForCausalLM.from_pretrained("mistralai/GptOss-8x7B-v0.1")
834
+ >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/GptOss-8x7B-v0.1")
835
+
836
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
837
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
838
+
839
+ >>> # Generate
840
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
841
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
842
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
843
+ ```"""
844
+
845
+ output_router_logits = (
846
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
847
+ )
848
+
849
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
850
+ outputs: MoeModelOutputWithPast = self.model(
851
+ input_ids=input_ids,
852
+ attention_mask=attention_mask,
853
+ position_ids=position_ids,
854
+ past_key_values=past_key_values,
855
+ inputs_embeds=inputs_embeds,
856
+ use_cache=use_cache,
857
+ output_router_logits=output_router_logits,
858
+ cache_position=cache_position,
859
+ **kwargs,
860
+ )
861
+
862
+ hidden_states = outputs.last_hidden_state
863
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
864
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
865
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
866
+
867
+ loss = None
868
+ if labels is not None:
869
+ loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
870
+
871
+ aux_loss = None
872
+ if output_router_logits:
873
+ aux_loss = load_balancing_loss_func(
874
+ outputs.router_logits,
875
+ self.num_experts,
876
+ self.num_experts_per_tok,
877
+ attention_mask,
878
+ )
879
+ if labels is not None:
880
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
881
+
882
+ return MoeCausalLMOutputWithPast(
883
+ loss=loss,
884
+ aux_loss=aux_loss,
885
+ logits=logits,
886
+ past_key_values=outputs.past_key_values,
887
+ hidden_states=outputs.hidden_states,
888
+ attentions=outputs.attentions,
889
+ router_logits=outputs.router_logits,
890
+ )
891
+
892
+
893
+ __all__ = ["GptOssForCausalLM", "GptOssModel", "GptOssPreTrainedModel"]
quantization_config.json ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "sym": true,
5
+ "data_type": "int",
6
+ "nsamples": 512,
7
+ "autoround_version": "0.6.1.dev",
8
+ "quant_method": "auto-round",
9
+ "packing_format": "auto_round:auto_gptq",
10
+ "extra_config": {
11
+ "model.layers.0.self_attn.q_proj": {
12
+ "bits": 16
13
+ },
14
+ "model.layers.0.self_attn.k_proj": {
15
+ "bits": 16
16
+ },
17
+ "model.layers.0.self_attn.v_proj": {
18
+ "bits": 16
19
+ },
20
+ "model.layers.0.self_attn.o_proj": {
21
+ "bits": 16
22
+ },
23
+ "model.layers.0.mlp.router.router": {
24
+ "bits": 16
25
+ },
26
+ "model.layers.1.self_attn.q_proj": {
27
+ "bits": 16
28
+ },
29
+ "model.layers.1.self_attn.k_proj": {
30
+ "bits": 16
31
+ },
32
+ "model.layers.1.self_attn.v_proj": {
33
+ "bits": 16
34
+ },
35
+ "model.layers.1.self_attn.o_proj": {
36
+ "bits": 16
37
+ },
38
+ "model.layers.1.mlp.router.router": {
39
+ "bits": 16
40
+ },
41
+ "model.layers.2.self_attn.q_proj": {
42
+ "bits": 16
43
+ },
44
+ "model.layers.2.self_attn.k_proj": {
45
+ "bits": 16
46
+ },
47
+ "model.layers.2.self_attn.v_proj": {
48
+ "bits": 16
49
+ },
50
+ "model.layers.2.self_attn.o_proj": {
51
+ "bits": 16
52
+ },
53
+ "model.layers.2.mlp.router.router": {
54
+ "bits": 16
55
+ },
56
+ "model.layers.3.self_attn.q_proj": {
57
+ "bits": 16
58
+ },
59
+ "model.layers.3.self_attn.k_proj": {
60
+ "bits": 16
61
+ },
62
+ "model.layers.3.self_attn.v_proj": {
63
+ "bits": 16
64
+ },
65
+ "model.layers.3.self_attn.o_proj": {
66
+ "bits": 16
67
+ },
68
+ "model.layers.3.mlp.router.router": {
69
+ "bits": 16
70
+ },
71
+ "model.layers.4.self_attn.q_proj": {
72
+ "bits": 16
73
+ },
74
+ "model.layers.4.self_attn.k_proj": {
75
+ "bits": 16
76
+ },
77
+ "model.layers.4.self_attn.v_proj": {
78
+ "bits": 16
79
+ },
80
+ "model.layers.4.self_attn.o_proj": {
81
+ "bits": 16
82
+ },
83
+ "model.layers.4.mlp.router.router": {
84
+ "bits": 16
85
+ },
86
+ "model.layers.5.self_attn.q_proj": {
87
+ "bits": 16
88
+ },
89
+ "model.layers.5.self_attn.k_proj": {
90
+ "bits": 16
91
+ },
92
+ "model.layers.5.self_attn.v_proj": {
93
+ "bits": 16
94
+ },
95
+ "model.layers.5.self_attn.o_proj": {
96
+ "bits": 16
97
+ },
98
+ "model.layers.5.mlp.router.router": {
99
+ "bits": 16
100
+ },
101
+ "model.layers.6.self_attn.q_proj": {
102
+ "bits": 16
103
+ },
104
+ "model.layers.6.self_attn.k_proj": {
105
+ "bits": 16
106
+ },
107
+ "model.layers.6.self_attn.v_proj": {
108
+ "bits": 16
109
+ },
110
+ "model.layers.6.self_attn.o_proj": {
111
+ "bits": 16
112
+ },
113
+ "model.layers.6.mlp.router.router": {
114
+ "bits": 16
115
+ },
116
+ "model.layers.7.self_attn.q_proj": {
117
+ "bits": 16
118
+ },
119
+ "model.layers.7.self_attn.k_proj": {
120
+ "bits": 16
121
+ },
122
+ "model.layers.7.self_attn.v_proj": {
123
+ "bits": 16
124
+ },
125
+ "model.layers.7.self_attn.o_proj": {
126
+ "bits": 16
127
+ },
128
+ "model.layers.7.mlp.router.router": {
129
+ "bits": 16
130
+ },
131
+ "model.layers.8.self_attn.q_proj": {
132
+ "bits": 16
133
+ },
134
+ "model.layers.8.self_attn.k_proj": {
135
+ "bits": 16
136
+ },
137
+ "model.layers.8.self_attn.v_proj": {
138
+ "bits": 16
139
+ },
140
+ "model.layers.8.self_attn.o_proj": {
141
+ "bits": 16
142
+ },
143
+ "model.layers.8.mlp.router.router": {
144
+ "bits": 16
145
+ },
146
+ "model.layers.9.self_attn.q_proj": {
147
+ "bits": 16
148
+ },
149
+ "model.layers.9.self_attn.k_proj": {
150
+ "bits": 16
151
+ },
152
+ "model.layers.9.self_attn.v_proj": {
153
+ "bits": 16
154
+ },
155
+ "model.layers.9.self_attn.o_proj": {
156
+ "bits": 16
157
+ },
158
+ "model.layers.9.mlp.router.router": {
159
+ "bits": 16
160
+ },
161
+ "model.layers.10.self_attn.q_proj": {
162
+ "bits": 16
163
+ },
164
+ "model.layers.10.self_attn.k_proj": {
165
+ "bits": 16
166
+ },
167
+ "model.layers.10.self_attn.v_proj": {
168
+ "bits": 16
169
+ },
170
+ "model.layers.10.self_attn.o_proj": {
171
+ "bits": 16
172
+ },
173
+ "model.layers.10.mlp.router.router": {
174
+ "bits": 16
175
+ },
176
+ "model.layers.11.self_attn.q_proj": {
177
+ "bits": 16
178
+ },
179
+ "model.layers.11.self_attn.k_proj": {
180
+ "bits": 16
181
+ },
182
+ "model.layers.11.self_attn.v_proj": {
183
+ "bits": 16
184
+ },
185
+ "model.layers.11.self_attn.o_proj": {
186
+ "bits": 16
187
+ },
188
+ "model.layers.11.mlp.router.router": {
189
+ "bits": 16
190
+ },
191
+ "model.layers.12.self_attn.q_proj": {
192
+ "bits": 16
193
+ },
194
+ "model.layers.12.self_attn.k_proj": {
195
+ "bits": 16
196
+ },
197
+ "model.layers.12.self_attn.v_proj": {
198
+ "bits": 16
199
+ },
200
+ "model.layers.12.self_attn.o_proj": {
201
+ "bits": 16
202
+ },
203
+ "model.layers.12.mlp.router.router": {
204
+ "bits": 16
205
+ },
206
+ "model.layers.13.self_attn.q_proj": {
207
+ "bits": 16
208
+ },
209
+ "model.layers.13.self_attn.k_proj": {
210
+ "bits": 16
211
+ },
212
+ "model.layers.13.self_attn.v_proj": {
213
+ "bits": 16
214
+ },
215
+ "model.layers.13.self_attn.o_proj": {
216
+ "bits": 16
217
+ },
218
+ "model.layers.13.mlp.router.router": {
219
+ "bits": 16
220
+ },
221
+ "model.layers.14.self_attn.q_proj": {
222
+ "bits": 16
223
+ },
224
+ "model.layers.14.self_attn.k_proj": {
225
+ "bits": 16
226
+ },
227
+ "model.layers.14.self_attn.v_proj": {
228
+ "bits": 16
229
+ },
230
+ "model.layers.14.self_attn.o_proj": {
231
+ "bits": 16
232
+ },
233
+ "model.layers.14.mlp.router.router": {
234
+ "bits": 16
235
+ },
236
+ "model.layers.15.self_attn.q_proj": {
237
+ "bits": 16
238
+ },
239
+ "model.layers.15.self_attn.k_proj": {
240
+ "bits": 16
241
+ },
242
+ "model.layers.15.self_attn.v_proj": {
243
+ "bits": 16
244
+ },
245
+ "model.layers.15.self_attn.o_proj": {
246
+ "bits": 16
247
+ },
248
+ "model.layers.15.mlp.router.router": {
249
+ "bits": 16
250
+ },
251
+ "model.layers.16.self_attn.q_proj": {
252
+ "bits": 16
253
+ },
254
+ "model.layers.16.self_attn.k_proj": {
255
+ "bits": 16
256
+ },
257
+ "model.layers.16.self_attn.v_proj": {
258
+ "bits": 16
259
+ },
260
+ "model.layers.16.self_attn.o_proj": {
261
+ "bits": 16
262
+ },
263
+ "model.layers.16.mlp.router.router": {
264
+ "bits": 16
265
+ },
266
+ "model.layers.17.self_attn.q_proj": {
267
+ "bits": 16
268
+ },
269
+ "model.layers.17.self_attn.k_proj": {
270
+ "bits": 16
271
+ },
272
+ "model.layers.17.self_attn.v_proj": {
273
+ "bits": 16
274
+ },
275
+ "model.layers.17.self_attn.o_proj": {
276
+ "bits": 16
277
+ },
278
+ "model.layers.17.mlp.router.router": {
279
+ "bits": 16
280
+ },
281
+ "model.layers.18.self_attn.q_proj": {
282
+ "bits": 16
283
+ },
284
+ "model.layers.18.self_attn.k_proj": {
285
+ "bits": 16
286
+ },
287
+ "model.layers.18.self_attn.v_proj": {
288
+ "bits": 16
289
+ },
290
+ "model.layers.18.self_attn.o_proj": {
291
+ "bits": 16
292
+ },
293
+ "model.layers.18.mlp.router.router": {
294
+ "bits": 16
295
+ },
296
+ "model.layers.19.self_attn.q_proj": {
297
+ "bits": 16
298
+ },
299
+ "model.layers.19.self_attn.k_proj": {
300
+ "bits": 16
301
+ },
302
+ "model.layers.19.self_attn.v_proj": {
303
+ "bits": 16
304
+ },
305
+ "model.layers.19.self_attn.o_proj": {
306
+ "bits": 16
307
+ },
308
+ "model.layers.19.mlp.router.router": {
309
+ "bits": 16
310
+ },
311
+ "model.layers.20.self_attn.q_proj": {
312
+ "bits": 16
313
+ },
314
+ "model.layers.20.self_attn.k_proj": {
315
+ "bits": 16
316
+ },
317
+ "model.layers.20.self_attn.v_proj": {
318
+ "bits": 16
319
+ },
320
+ "model.layers.20.self_attn.o_proj": {
321
+ "bits": 16
322
+ },
323
+ "model.layers.20.mlp.router.router": {
324
+ "bits": 16
325
+ },
326
+ "model.layers.21.self_attn.q_proj": {
327
+ "bits": 16
328
+ },
329
+ "model.layers.21.self_attn.k_proj": {
330
+ "bits": 16
331
+ },
332
+ "model.layers.21.self_attn.v_proj": {
333
+ "bits": 16
334
+ },
335
+ "model.layers.21.self_attn.o_proj": {
336
+ "bits": 16
337
+ },
338
+ "model.layers.21.mlp.router.router": {
339
+ "bits": 16
340
+ },
341
+ "model.layers.22.self_attn.q_proj": {
342
+ "bits": 16
343
+ },
344
+ "model.layers.22.self_attn.k_proj": {
345
+ "bits": 16
346
+ },
347
+ "model.layers.22.self_attn.v_proj": {
348
+ "bits": 16
349
+ },
350
+ "model.layers.22.self_attn.o_proj": {
351
+ "bits": 16
352
+ },
353
+ "model.layers.22.mlp.router.router": {
354
+ "bits": 16
355
+ },
356
+ "model.layers.23.self_attn.q_proj": {
357
+ "bits": 16
358
+ },
359
+ "model.layers.23.self_attn.k_proj": {
360
+ "bits": 16
361
+ },
362
+ "model.layers.23.self_attn.v_proj": {
363
+ "bits": 16
364
+ },
365
+ "model.layers.23.self_attn.o_proj": {
366
+ "bits": 16
367
+ },
368
+ "model.layers.23.mlp.router.router": {
369
+ "bits": 16
370
+ }
371
+ }
372
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|return|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0ca2e99eca05c8a688ec60100806dda193defc5839c985b321d9e8492efcb84
3
+ size 27868273
tokenizer_config.json ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "199998": {
4
+ "content": "<|startoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "199999": {
12
+ "content": "<|endoftext|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "200000": {
20
+ "content": "<|reserved_200000|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "200001": {
28
+ "content": "<|reserved_200001|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "200002": {
36
+ "content": "<|return|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "200003": {
44
+ "content": "<|constrain|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "200004": {
52
+ "content": "<|reserved_200004|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "200005": {
60
+ "content": "<|channel|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "200006": {
68
+ "content": "<|start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "200007": {
76
+ "content": "<|end|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "200008": {
84
+ "content": "<|message|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "200009": {
92
+ "content": "<|reserved_200009|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "200010": {
100
+ "content": "<|reserved_200010|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "200011": {
108
+ "content": "<|reserved_200011|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "200012": {
116
+ "content": "<|call|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "200013": {
124
+ "content": "<|reserved_200013|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "200014": {
132
+ "content": "<|reserved_200014|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "200015": {
140
+ "content": "<|reserved_200015|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "200016": {
148
+ "content": "<|reserved_200016|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "200017": {
156
+ "content": "<|reserved_200017|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "200018": {
164
+ "content": "<|endofprompt|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ }
171
+ },
172
+ "bos_token": "<|startoftext|>",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "<|return|>",
175
+ "extra_special_tokens": {},
176
+ "model_input_names": [
177
+ "input_ids",
178
+ "attention_mask"
179
+ ],
180
+ "model_max_length": 1000000000000000019884624838656,
181
+ "pad_token": "<|endoftext|>",
182
+ "tokenizer_class": "PreTrainedTokenizerFast"
183
+ }