import copy from typing import Callable, Optional, Union import torch from accelerate import init_empty_weights from torch import nn from torch.nn import functional as F from transformers.cache_utils import Cache, DynamicCache from transformers.generation import GenerationMixin from transformers.integrations.hub_kernels import use_kernel_forward_from_hub from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask from transformers.modeling_layers import GradientCheckpointingLayer from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from transformers.processing_utils import Unpack from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple from transformers.utils.generic import OutputRecorder, check_model_inputs from transformers.configuration_utils import PretrainedConfig, layer_type_validation from transformers.modeling_rope_utils import rope_config_validation class GptOssConfig(PretrainedConfig): r""" This will yield a configuration to that of the BERT [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture. """ model_type = "gpt_oss" base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.self_attn.sinks": "local_rowwise", "layers.*.mlp.experts": "gather", "layers.*.mlp.router": "ep_router", "layers.*.mlp.experts.gate_up_proj": "grouped_gemm", "layers.*.mlp.experts.gate_up_proj_bias": "grouped_gemm", "layers.*.mlp.experts.down_proj": "grouped_gemm", "layers.*.mlp.experts.down_proj_bias": "grouped_gemm", } def __init__( self, num_hidden_layers: int = 36, num_local_experts: int = 128, vocab_size: int = 201088, hidden_size: int = 2880, intermediate_size: int = 2880, head_dim: int = 64, num_attention_heads: int = 64, num_key_value_heads: int = 8, sliding_window: int = 128, rope_theta: float = 150000.0, tie_word_embeddings=False, hidden_act: str = "silu", initializer_range: float = 0.02, max_position_embeddings=131072, rms_norm_eps: float = 1e-5, rope_scaling={"rope_type": "yarn", "factor": 32.0, "beta_fast": 32.0, "beta_slow": 1.0, "truncate": False}, attention_dropout: float = 0.0, num_experts_per_tok=4, router_aux_loss_coef: float = 0.9, output_router_logits=False, use_cache=True, layer_types=None, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_local_experts = num_local_experts self.sliding_window = sliding_window self.num_experts_per_tok = num_experts_per_tok # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_dropout = attention_dropout self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads self.layer_types = layer_types if self.layer_types is None: self.layer_types = [ "sliding_attention" if bool((i + 1) % 2) else "full_attention" for i in range(self.num_hidden_layers) ] layer_type_validation(self.layer_types) # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, copy it it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) self.attention_bias = True self.max_position_embeddings = max_position_embeddings self.router_aux_loss_coef = router_aux_loss_coef self.output_router_logits = output_router_logits self.use_cache = use_cache super().__init__( tie_word_embeddings=tie_word_embeddings, **kwargs, ) @use_kernel_forward_from_hub("RMSNorm") class GptOssRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ GptOssRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return (self.weight * hidden_states).to(input_dtype) # main diff with Llama def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" # # class GptOssExperts(nn.Module): # def __init__(self, config): # super().__init__() # self.intermediate_size = config.intermediate_size # self.num_experts = config.num_local_experts # self.hidden_size = config.hidden_size # self.expert_dim = self.intermediate_size # self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim)) # self.gate_up_proj_bias = nn.Parameter(torch.empty(self.num_experts, 2 * self.expert_dim)) # self.down_proj = nn.Parameter(torch.empty((self.num_experts, self.expert_dim, self.hidden_size))) # self.down_proj_bias = nn.Parameter(torch.empty(self.num_experts, self.hidden_size)) # self.alpha = 1.702 # self.limit = 7.0 # # # # def forward(self, hidden_states: torch.Tensor, router_indices=None, routing_weights=None) -> torch.Tensor: # """ # When training is is more efficient to just loop over the experts and compute the output for each expert # as otherwise the memory would explode. # # For inference we can sacrifice some memory and compute the output for all experts at once. By repeating the inputs. # # Args: # hidden_states (torch.Tensor): (batch_size, seq_len, hidden_size) # selected_experts (torch.Tensor): (batch_size * token_num, top_k) # routing_weights (torch.Tensor): (batch_size * token_num, num_experts) # Returns: # torch.Tensor # """ # batch_size = hidden_states.shape[0] # hidden_states = hidden_states.reshape(-1, self.hidden_size) # (num_tokens, hidden_size) # num_experts = routing_weights.shape[1] # if self.training: # next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device) # with torch.no_grad(): # expert_mask = torch.nn.functional.one_hot(router_indices, num_classes=num_experts) # expert_mask = expert_mask.permute(2, 1, 0) # # we sum on the top_k and on the sequence lenght to get which experts # # are hit this time around # expert_hitted = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero() # for expert_idx in expert_hitted[:]: # with torch.no_grad(): # _, token_idx = torch.where(expert_mask[expert_idx[0]]) # current_state = hidden_states[token_idx] # gate_up = current_state @ self.gate_up_proj[expert_idx] + self.gate_up_proj_bias[expert_idx] # gate, up = gate_up[..., ::2], gate_up[..., 1::2] # gate = gate.clamp(min=None, max=self.limit) # up = up.clamp(min=-self.limit, max=self.limit) # glu = gate * torch.sigmoid(gate * self.alpha) # gated_output = (up + 1) * glu # out = gated_output @ self.down_proj[expert_idx] + self.down_proj_bias[expert_idx] # weighted_output = out[0] * routing_weights[token_idx, expert_idx, None] # next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype)) # next_states = next_states.view(batch_size, -1, self.hidden_size) # else: # hidden_states = hidden_states.repeat(num_experts, 1) # hidden_states = hidden_states.view(num_experts, -1, self.hidden_size) # gate_up = torch.bmm(hidden_states, self.gate_up_proj) + self.gate_up_proj_bias[..., None, :] # gate, up = gate_up[..., ::2], gate_up[..., 1::2] # gate = gate.clamp(min=None, max=self.limit) # up = up.clamp(min=-self.limit, max=self.limit) # glu = gate * torch.sigmoid(gate * self.alpha) # next_states = torch.bmm(((up + 1) * glu), self.down_proj) # next_states = next_states + self.down_proj_bias[..., None, :] # next_states = next_states.view(num_experts, batch_size, -1, self.hidden_size) # next_states = next_states * routing_weights.transpose(0, 1).view(num_experts, batch_size, -1)[..., None] # next_states = next_states.sum(dim=0) # return next_states class GptOssExperts(nn.Module): def __init__(self, config): super().__init__() self.intermediate_size = config.intermediate_size self.num_experts = config.num_local_experts self.hidden_size = config.hidden_size self.expert_dim = self.intermediate_size # 使用nn.Linear替代手动矩阵乘法 self.gate_up_projs = nn.ModuleList([ nn.Linear(self.hidden_size, 2 * self.expert_dim) for _ in range(self.num_experts) ]) self.down_projs = nn.ModuleList([ nn.Linear(self.expert_dim, self.hidden_size) for _ in range(self.num_experts) ]) self.alpha = 1.702 self.limit = 7.0 def forward(self, hidden_states: torch.Tensor, router_indices=None, routing_weights=None) -> torch.Tensor: batch_size = hidden_states.shape[0] hidden_states = hidden_states.reshape(-1, self.hidden_size) # (num_tokens, hidden_size) num_experts = routing_weights.shape[1] if self.training: next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device) with torch.no_grad(): expert_mask = torch.nn.functional.one_hot(router_indices, num_classes=num_experts) expert_mask = expert_mask.permute(2, 1, 0) expert_hitted = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero() for expert_idx in expert_hitted[:]: with torch.no_grad(): _, token_idx = torch.where(expert_mask[expert_idx[0]]) current_state = hidden_states[token_idx] # 使用Linear层替代手动矩阵乘法 gate_up = self.gate_up_projs[expert_idx](current_state) gate, up = gate_up[..., ::2], gate_up[..., 1::2] gate = gate.clamp(min=None, max=self.limit) up = up.clamp(min=-self.limit, max=self.limit) glu = gate * torch.sigmoid(gate * self.alpha) gated_output = (up + 1) * glu # 使用Linear层替代手动矩阵乘法 out = self.down_projs[expert_idx](gated_output) weighted_output = out[0] * routing_weights[token_idx, expert_idx, None] next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype)) next_states = next_states.view(batch_size, -1, self.hidden_size) else: hidden_states = hidden_states.repeat(num_experts, 1) hidden_states = hidden_states.view(num_experts, -1, self.hidden_size) # 批量处理所有专家 gate_up = torch.stack([proj(hidden_states[i]) for i, proj in enumerate(self.gate_up_projs)]) gate, up = gate_up[..., ::2], gate_up[..., 1::2] gate = gate.clamp(min=None, max=self.limit) up = up.clamp(min=-self.limit, max=self.limit) glu = gate * torch.sigmoid(gate * self.alpha) next_states = torch.stack([proj((up[i] + 1) * glu[i]) for i, proj in enumerate(self.down_projs)]) next_states = next_states.view(num_experts, batch_size, -1, self.hidden_size) next_states = next_states * routing_weights.transpose(0, 1).view(num_experts, batch_size, -1)[..., None] next_states = next_states.sum(dim=0) return next_states # class GptOssTopKRouter(nn.Module): # def __init__(self, config): # super().__init__() # self.top_k = config.num_experts_per_tok # self.num_experts = config.num_local_experts # self.hidden_dim = config.hidden_size # self.weight = nn.Parameter(torch.empty(self.num_experts, self.hidden_dim)) # self.bias = nn.Parameter(torch.empty(self.num_experts)) # # def forward(self, hidden_states): # hidden_states = hidden_states.reshape(-1, self.hidden_dim) # router_logits = F.linear(hidden_states, self.weight, self.bias) # (seq_len, num_experts) # router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=-1) # (seq_len, top_k) # router_top_value = torch.nn.functional.softmax(router_top_value, dim=1, dtype=router_top_value.dtype) # router_scores = torch.zeros_like(router_logits).scatter_(1, router_indices, router_top_value) # return router_scores, router_indices class GptOssTopKRouter(nn.Module): def __init__(self, config): super().__init__() self.top_k = config.num_experts_per_tok self.num_experts = config.num_local_experts self.hidden_dim = config.hidden_size # 使用nn.Linear替代手动参数 self.router = nn.Linear(self.hidden_dim, self.num_experts) def forward(self, hidden_states): # 展平输入 (batch_size * seq_len, hidden_dim) hidden_states = hidden_states.reshape(-1, self.hidden_dim) router_logits = self.router(hidden_states) # (num_tokens, num_experts) router_top_value, router_indices = torch.topk( router_logits, self.top_k, dim=-1 ) # (num_tokens, top_k) router_top_value = F.softmax(router_top_value, dim=-1, dtype=router_top_value.dtype) router_scores = torch.zeros_like(router_logits).scatter_( dim=1, index=router_indices, src=router_top_value ) return router_scores, router_indices @use_kernel_forward_from_hub("MegaBlocksMoeMLP") class GptOssMLP(nn.Module): def __init__(self, config): super().__init__() self.router = GptOssTopKRouter(config) self.experts = GptOssExperts(config) def forward(self, hidden_states): router_scores, router_indices = self.router(hidden_states) # (num_experts, seq_len) routed_out = self.experts(hidden_states, router_indices=router_indices, routing_weights=router_scores) return routed_out, router_scores class GptOssRotaryEmbedding(nn.Module): def __init__(self, config: GptOssConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = freqs cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(x.dtype), sin.to(x.dtype) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def _apply_rotary_emb( x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, ) -> torch.Tensor: first_half, second_half = torch.chunk(x, 2, dim=-1) first_ = first_half * cos - second_half * sin second_ = second_half * cos + first_half * sin return torch.cat((first_, second_), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = _apply_rotary_emb(q, cos, sin) k_embed = _apply_rotary_emb(k, cos, sin) return q_embed, k_embed def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask sinks = module.sinks.reshape(1, -1, 1, 1).expand(query.shape[0], -1, query.shape[-2], -1) combined_logits = torch.cat([attn_weights, sinks], dim=-1) # This was not in the original implementation and slightly affect results; it prevents overflow in BF16/FP16 # when training with bsz>1 we clamp max values. combined_logits = combined_logits - combined_logits.max(dim=-1, keepdim=True).values probs = F.softmax(combined_logits, dim=-1, dtype=combined_logits.dtype) scores = probs[..., :-1] # we drop the sink here attn_weights = nn.functional.dropout(scores, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class GptOssAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: GptOssConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None self.sinks = nn.Parameter(torch.empty(config.num_attention_heads)) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.Tensor, torch.Tensor]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: cache_kwargs = {"cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, sliding_window=self.sliding_window, s_aux=self.sinks, # diff with Llama **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class GptOssDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: GptOssConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = GptOssAttention(config=config, layer_idx=layer_idx) self.mlp = GptOssMLP(config) self.input_layernorm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.attention_type = config.layer_types[layer_idx] def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.Tensor]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states, _ = self.mlp(hidden_states) # diff with llama: router scores hidden_states = residual + hidden_states return hidden_states @auto_docstring class GptOssPreTrainedModel(PreTrainedModel): config: GptOssConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["GptOssDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn = True _supports_sdpa = False _supports_flex_attn = True _can_compile_fullgraph = True _supports_attention_backend = True _can_record_outputs = { "router_logits": OutputRecorder(GptOssTopKRouter, index=0), "hidden_states": GptOssDecoderLayer, "attentions": GptOssAttention, } _keep_in_fp32_modules = ["post_attention_layernorm", "input_layernorm", "norm"] _supports_flash_attention = False _supports_flex_attention = False def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Parameter): module.data.normal_(mean=0.0, std=std) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, GptOssRMSNorm): module.weight.data.fill_(1.0) # elif isinstance(module, GptOssExperts):##too slow # for gate_up_proj in module.gate_up_projs: # gate_up_proj.weight.normal_(mean=0.0, std=std) # gate_up_proj.bias.data.zero_() # for down_proj in module.down_projs: # down_proj.weight.data.normal_(mean=0.0, std=std) # down_proj.bias.data.zero_() elif isinstance(module, GptOssAttention): module.sinks.data.normal_(mean=0.0, std=std) # elif isinstance(module, GptOssTopKRouter): # module.weight.data.normal_(mean=0.0, std=std) # module.bias.data.normal_(mean=0.0, std=std) @auto_docstring class GptOssModel(GptOssPreTrainedModel): _no_split_modules = ["GptOssDecoderLayer"] def __init__(self, config: GptOssConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [GptOssDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = GptOssRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() @check_model_inputs @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[list[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> MoeModelOutputWithPast: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if use_cache and past_key_values is None: past_key_values = DynamicCache() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) # It may already have been prepared by e.g. `generate` if not isinstance(causal_mask_mapping := attention_mask, dict): mask_kwargs = { "config": self.config, "input_embeds": inputs_embeds, "attention_mask": attention_mask, "cache_position": cache_position, "past_key_values": past_key_values, } causal_mask_mapping = { "full_attention": create_causal_mask(**mask_kwargs), "sliding_attention": create_sliding_window_causal_mask(**mask_kwargs), } hidden_states = inputs_embeds position_embeddings = self.rotary_emb(hidden_states, position_ids) for decoder_layer in self.layers: hidden_states = decoder_layer( hidden_states, attention_mask=causal_mask_mapping[decoder_layer.attention_type], position_ids=position_ids, past_key_value=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.norm(hidden_states) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, ) def load_balancing_loss_func( gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None], num_experts: Optional[int] = None, top_k=2, attention_mask: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, int]: r""" Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between experts is too unbalanced. Args: gate_logits: Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of shape [batch_size X sequence_length, num_experts]. num_experts: Number of experts top_k: The number of experts to route per-token, can be also interpreted as the `top-k` routing parameter. attention_mask (`torch.Tensor`, *optional*): The attention_mask used in forward function shape [batch_size X sequence_length] if not None. Returns: The auxiliary loss. """ if gate_logits is None or not isinstance(gate_logits, tuple): return 0 if isinstance(gate_logits, tuple): compute_device = gate_logits[0].device concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) if attention_mask is None: # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.mean(expert_mask.float(), dim=0) # Compute the average probability of routing to these experts router_prob_per_expert = torch.mean(routing_weights, dim=0) else: batch_size, sequence_length = attention_mask.shape num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask expert_attention_mask = ( attention_mask[None, :, :, None, None] .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) .reshape(-1, top_k, num_experts) .to(compute_device) ) # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( expert_attention_mask, dim=0 ) # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert router_per_expert_attention_mask = ( attention_mask[None, :, :, None] .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) .reshape(-1, num_experts) .to(compute_device) ) # Compute the average probability of routing to these experts router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( router_per_expert_attention_mask, dim=0 ) overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) return overall_loss * num_experts @auto_docstring class GptOssForCausalLM(GptOssPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} def __init__(self, config): super().__init__(config) self.model = GptOssModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.router_aux_loss_coef = config.router_aux_loss_coef self.num_experts = config.num_local_experts self.num_experts_per_tok = config.num_experts_per_tok # Initialize weights and apply final processing self.post_init() def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_router_logits: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> MoeCausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, GptOssForCausalLM >>> model = GptOssForCausalLM.from_pretrained("mistralai/GptOss-8x7B-v0.1") >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/GptOss-8x7B-v0.1") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: MoeModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_router_logits=output_router_logits, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **kwargs) aux_loss = None if output_router_logits: aux_loss = load_balancing_loss_func( outputs.router_logits, self.num_experts, self.num_experts_per_tok, attention_mask, ) if labels is not None: loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device return MoeCausalLMOutputWithPast( loss=loss, aux_loss=aux_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, ) __all__ = ["GptOssForCausalLM", "GptOssModel", "GptOssPreTrainedModel"]