Jeonghwa commited on
Commit
df50ade
·
verified ·
1 Parent(s): a5abb24

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: bert-base-multilingual-cased
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bert-base-multilingual-cased",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "classifier",
23
+ "score"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "r": 8,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "value",
31
+ "query"
32
+ ],
33
+ "task_type": "SEQ_CLS",
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7fbbe85a018cbc03df57dcb70d167166206be94ef08498c2fde9528cb9bfc56
3
+ size 1189596
checkpoint-2564/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: bert-base-multilingual-cased
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-2564/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bert-base-multilingual-cased",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "classifier",
23
+ "score"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "r": 8,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "value",
31
+ "query"
32
+ ],
33
+ "task_type": "SEQ_CLS",
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-2564/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7fbbe85a018cbc03df57dcb70d167166206be94ef08498c2fde9528cb9bfc56
3
+ size 1189596
checkpoint-2564/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f5548d42a3a9f84416dc5d962b6816ac066735b52b7510768644636192ad63e
3
+ size 2407802
checkpoint-2564/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bb6e8e031e8eb48a5dedf63a55b3ce8f7c921ab549210c2db3be7848bd1e62f
3
+ size 14244
checkpoint-2564/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99a0f3b37430e7123db02ed3ebf0928c4e150e4acab827794efa75589b87c3cc
3
+ size 1064
checkpoint-2564/special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
checkpoint-2564/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2564/tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
checkpoint-2564/trainer_state.json ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.386317253112793,
3
+ "best_model_checkpoint": "./lora-mcqa-model\\checkpoint-2564",
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 2564,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01950078003120125,
13
+ "grad_norm": 1.9830408096313477,
14
+ "learning_rate": 0.00019869994799791993,
15
+ "loss": 1.394,
16
+ "step": 50
17
+ },
18
+ {
19
+ "epoch": 0.0390015600624025,
20
+ "grad_norm": 1.4824576377868652,
21
+ "learning_rate": 0.00019742589703588144,
22
+ "loss": 1.3896,
23
+ "step": 100
24
+ },
25
+ {
26
+ "epoch": 0.05850234009360374,
27
+ "grad_norm": 1.495307445526123,
28
+ "learning_rate": 0.00019612584503380135,
29
+ "loss": 1.3846,
30
+ "step": 150
31
+ },
32
+ {
33
+ "epoch": 0.078003120124805,
34
+ "grad_norm": 1.9779902696609497,
35
+ "learning_rate": 0.00019482579303172127,
36
+ "loss": 1.3801,
37
+ "step": 200
38
+ },
39
+ {
40
+ "epoch": 0.09750390015600624,
41
+ "grad_norm": 1.9127660989761353,
42
+ "learning_rate": 0.00019352574102964121,
43
+ "loss": 1.3866,
44
+ "step": 250
45
+ },
46
+ {
47
+ "epoch": 0.11700468018720749,
48
+ "grad_norm": 1.6987781524658203,
49
+ "learning_rate": 0.0001922256890275611,
50
+ "loss": 1.3873,
51
+ "step": 300
52
+ },
53
+ {
54
+ "epoch": 0.13650546021840873,
55
+ "grad_norm": 1.5772737264633179,
56
+ "learning_rate": 0.00019092563702548102,
57
+ "loss": 1.3981,
58
+ "step": 350
59
+ },
60
+ {
61
+ "epoch": 0.15600624024961,
62
+ "grad_norm": 1.6646242141723633,
63
+ "learning_rate": 0.00018962558502340094,
64
+ "loss": 1.3819,
65
+ "step": 400
66
+ },
67
+ {
68
+ "epoch": 0.17550702028081122,
69
+ "grad_norm": 1.4280552864074707,
70
+ "learning_rate": 0.00018832553302132086,
71
+ "loss": 1.3905,
72
+ "step": 450
73
+ },
74
+ {
75
+ "epoch": 0.19500780031201248,
76
+ "grad_norm": 1.2003318071365356,
77
+ "learning_rate": 0.00018702548101924078,
78
+ "loss": 1.3912,
79
+ "step": 500
80
+ },
81
+ {
82
+ "epoch": 0.21450858034321374,
83
+ "grad_norm": 1.2694647312164307,
84
+ "learning_rate": 0.0001857254290171607,
85
+ "loss": 1.3887,
86
+ "step": 550
87
+ },
88
+ {
89
+ "epoch": 0.23400936037441497,
90
+ "grad_norm": 2.167478084564209,
91
+ "learning_rate": 0.0001844253770150806,
92
+ "loss": 1.3849,
93
+ "step": 600
94
+ },
95
+ {
96
+ "epoch": 0.2535101404056162,
97
+ "grad_norm": 1.689456820487976,
98
+ "learning_rate": 0.00018312532501300053,
99
+ "loss": 1.3918,
100
+ "step": 650
101
+ },
102
+ {
103
+ "epoch": 0.27301092043681746,
104
+ "grad_norm": 1.3930853605270386,
105
+ "learning_rate": 0.00018182527301092045,
106
+ "loss": 1.3892,
107
+ "step": 700
108
+ },
109
+ {
110
+ "epoch": 0.2925117004680187,
111
+ "grad_norm": 1.3363187313079834,
112
+ "learning_rate": 0.00018052522100884036,
113
+ "loss": 1.3896,
114
+ "step": 750
115
+ },
116
+ {
117
+ "epoch": 0.31201248049922,
118
+ "grad_norm": 1.33578360080719,
119
+ "learning_rate": 0.00017922516900676028,
120
+ "loss": 1.3871,
121
+ "step": 800
122
+ },
123
+ {
124
+ "epoch": 0.33151326053042124,
125
+ "grad_norm": 1.5101064443588257,
126
+ "learning_rate": 0.0001779251170046802,
127
+ "loss": 1.3843,
128
+ "step": 850
129
+ },
130
+ {
131
+ "epoch": 0.35101404056162244,
132
+ "grad_norm": 1.1404200792312622,
133
+ "learning_rate": 0.00017662506500260011,
134
+ "loss": 1.3869,
135
+ "step": 900
136
+ },
137
+ {
138
+ "epoch": 0.3705148205928237,
139
+ "grad_norm": 1.2848296165466309,
140
+ "learning_rate": 0.00017532501300052003,
141
+ "loss": 1.3922,
142
+ "step": 950
143
+ },
144
+ {
145
+ "epoch": 0.39001560062402496,
146
+ "grad_norm": 1.8385337591171265,
147
+ "learning_rate": 0.00017402496099843995,
148
+ "loss": 1.389,
149
+ "step": 1000
150
+ },
151
+ {
152
+ "epoch": 0.4095163806552262,
153
+ "grad_norm": 1.3018165826797485,
154
+ "learning_rate": 0.00017272490899635987,
155
+ "loss": 1.385,
156
+ "step": 1050
157
+ },
158
+ {
159
+ "epoch": 0.4290171606864275,
160
+ "grad_norm": 1.3563063144683838,
161
+ "learning_rate": 0.00017142485699427976,
162
+ "loss": 1.3871,
163
+ "step": 1100
164
+ },
165
+ {
166
+ "epoch": 0.4485179407176287,
167
+ "grad_norm": 1.234568476676941,
168
+ "learning_rate": 0.0001701248049921997,
169
+ "loss": 1.382,
170
+ "step": 1150
171
+ },
172
+ {
173
+ "epoch": 0.46801872074882994,
174
+ "grad_norm": 1.41502046585083,
175
+ "learning_rate": 0.00016882475299011962,
176
+ "loss": 1.3885,
177
+ "step": 1200
178
+ },
179
+ {
180
+ "epoch": 0.4875195007800312,
181
+ "grad_norm": 1.309103012084961,
182
+ "learning_rate": 0.00016752470098803954,
183
+ "loss": 1.3942,
184
+ "step": 1250
185
+ },
186
+ {
187
+ "epoch": 0.5070202808112324,
188
+ "grad_norm": 1.4687711000442505,
189
+ "learning_rate": 0.00016622464898595945,
190
+ "loss": 1.3855,
191
+ "step": 1300
192
+ },
193
+ {
194
+ "epoch": 0.5265210608424337,
195
+ "grad_norm": 1.1189204454421997,
196
+ "learning_rate": 0.00016492459698387937,
197
+ "loss": 1.388,
198
+ "step": 1350
199
+ },
200
+ {
201
+ "epoch": 0.5460218408736349,
202
+ "grad_norm": 1.3603004217147827,
203
+ "learning_rate": 0.0001636245449817993,
204
+ "loss": 1.3892,
205
+ "step": 1400
206
+ },
207
+ {
208
+ "epoch": 0.5655226209048362,
209
+ "grad_norm": 1.442458152770996,
210
+ "learning_rate": 0.00016232449297971918,
211
+ "loss": 1.3839,
212
+ "step": 1450
213
+ },
214
+ {
215
+ "epoch": 0.5850234009360374,
216
+ "grad_norm": 0.9751923084259033,
217
+ "learning_rate": 0.00016102444097763912,
218
+ "loss": 1.389,
219
+ "step": 1500
220
+ },
221
+ {
222
+ "epoch": 0.6045241809672387,
223
+ "grad_norm": 0.9651883244514465,
224
+ "learning_rate": 0.00015972438897555904,
225
+ "loss": 1.3842,
226
+ "step": 1550
227
+ },
228
+ {
229
+ "epoch": 0.62402496099844,
230
+ "grad_norm": 0.9299620985984802,
231
+ "learning_rate": 0.00015842433697347893,
232
+ "loss": 1.3869,
233
+ "step": 1600
234
+ },
235
+ {
236
+ "epoch": 0.6435257410296412,
237
+ "grad_norm": 0.9508662819862366,
238
+ "learning_rate": 0.00015712428497139885,
239
+ "loss": 1.3946,
240
+ "step": 1650
241
+ },
242
+ {
243
+ "epoch": 0.6630265210608425,
244
+ "grad_norm": 1.1460316181182861,
245
+ "learning_rate": 0.0001558242329693188,
246
+ "loss": 1.3932,
247
+ "step": 1700
248
+ },
249
+ {
250
+ "epoch": 0.6825273010920437,
251
+ "grad_norm": 1.099560022354126,
252
+ "learning_rate": 0.0001545241809672387,
253
+ "loss": 1.387,
254
+ "step": 1750
255
+ },
256
+ {
257
+ "epoch": 0.7020280811232449,
258
+ "grad_norm": 1.0458426475524902,
259
+ "learning_rate": 0.0001532241289651586,
260
+ "loss": 1.3873,
261
+ "step": 1800
262
+ },
263
+ {
264
+ "epoch": 0.7215288611544461,
265
+ "grad_norm": 1.1988131999969482,
266
+ "learning_rate": 0.00015192407696307852,
267
+ "loss": 1.3831,
268
+ "step": 1850
269
+ },
270
+ {
271
+ "epoch": 0.7410296411856474,
272
+ "grad_norm": 1.167151927947998,
273
+ "learning_rate": 0.00015062402496099846,
274
+ "loss": 1.3865,
275
+ "step": 1900
276
+ },
277
+ {
278
+ "epoch": 0.7605304212168487,
279
+ "grad_norm": 0.9355433583259583,
280
+ "learning_rate": 0.00014932397295891835,
281
+ "loss": 1.3899,
282
+ "step": 1950
283
+ },
284
+ {
285
+ "epoch": 0.7800312012480499,
286
+ "grad_norm": 1.04149329662323,
287
+ "learning_rate": 0.00014802392095683827,
288
+ "loss": 1.3857,
289
+ "step": 2000
290
+ },
291
+ {
292
+ "epoch": 0.7995319812792512,
293
+ "grad_norm": 0.8921425938606262,
294
+ "learning_rate": 0.00014672386895475822,
295
+ "loss": 1.3882,
296
+ "step": 2050
297
+ },
298
+ {
299
+ "epoch": 0.8190327613104524,
300
+ "grad_norm": 1.4201322793960571,
301
+ "learning_rate": 0.0001454238169526781,
302
+ "loss": 1.3885,
303
+ "step": 2100
304
+ },
305
+ {
306
+ "epoch": 0.8385335413416537,
307
+ "grad_norm": 1.2703887224197388,
308
+ "learning_rate": 0.00014412376495059802,
309
+ "loss": 1.3868,
310
+ "step": 2150
311
+ },
312
+ {
313
+ "epoch": 0.858034321372855,
314
+ "grad_norm": 1.2008202075958252,
315
+ "learning_rate": 0.00014282371294851794,
316
+ "loss": 1.3862,
317
+ "step": 2200
318
+ },
319
+ {
320
+ "epoch": 0.8775351014040562,
321
+ "grad_norm": 1.705498456954956,
322
+ "learning_rate": 0.0001415236609464379,
323
+ "loss": 1.3837,
324
+ "step": 2250
325
+ },
326
+ {
327
+ "epoch": 0.8970358814352574,
328
+ "grad_norm": 1.1787363290786743,
329
+ "learning_rate": 0.00014022360894435778,
330
+ "loss": 1.391,
331
+ "step": 2300
332
+ },
333
+ {
334
+ "epoch": 0.9165366614664586,
335
+ "grad_norm": 0.9128132462501526,
336
+ "learning_rate": 0.0001389235569422777,
337
+ "loss": 1.3829,
338
+ "step": 2350
339
+ },
340
+ {
341
+ "epoch": 0.9360374414976599,
342
+ "grad_norm": 1.2079758644104004,
343
+ "learning_rate": 0.0001376235049401976,
344
+ "loss": 1.3879,
345
+ "step": 2400
346
+ },
347
+ {
348
+ "epoch": 0.9555382215288611,
349
+ "grad_norm": 1.4396191835403442,
350
+ "learning_rate": 0.00013632345293811753,
351
+ "loss": 1.3859,
352
+ "step": 2450
353
+ },
354
+ {
355
+ "epoch": 0.9750390015600624,
356
+ "grad_norm": 0.9314255118370056,
357
+ "learning_rate": 0.00013502340093603745,
358
+ "loss": 1.39,
359
+ "step": 2500
360
+ },
361
+ {
362
+ "epoch": 0.9945397815912637,
363
+ "grad_norm": 0.9400072693824768,
364
+ "learning_rate": 0.00013372334893395736,
365
+ "loss": 1.3861,
366
+ "step": 2550
367
+ },
368
+ {
369
+ "epoch": 1.0,
370
+ "eval_loss": 1.386317253112793,
371
+ "eval_runtime": 16.917,
372
+ "eval_samples_per_second": 75.782,
373
+ "eval_steps_per_second": 18.975,
374
+ "step": 2564
375
+ }
376
+ ],
377
+ "logging_steps": 50,
378
+ "max_steps": 7692,
379
+ "num_input_tokens_seen": 0,
380
+ "num_train_epochs": 3,
381
+ "save_steps": 500,
382
+ "stateful_callbacks": {
383
+ "TrainerControl": {
384
+ "args": {
385
+ "should_epoch_stop": false,
386
+ "should_evaluate": false,
387
+ "should_log": false,
388
+ "should_save": true,
389
+ "should_training_stop": false
390
+ },
391
+ "attributes": {}
392
+ }
393
+ },
394
+ "total_flos": 1.082997836648448e+16,
395
+ "train_batch_size": 4,
396
+ "trial_name": null,
397
+ "trial_params": null
398
+ }
checkpoint-2564/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44ca3034cf87097f30254f9aacafe4cc22fa749525bb201546c79db28d1797eb
3
+ size 5240
checkpoint-2564/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-7692/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: bert-base-multilingual-cased
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-7692/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bert-base-multilingual-cased",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "classifier",
23
+ "score"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "r": 8,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "value",
31
+ "query"
32
+ ],
33
+ "task_type": "SEQ_CLS",
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-7692/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a413fc5b630ab058ab404b2a56b1a9fc9ff0113dc9ad50a922c07e15720ab15
3
+ size 1189596
checkpoint-7692/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2073b2db36698c73e4651c5759064e95a25e91f7530d7e906ece1358eefffa57
3
+ size 2407802
checkpoint-7692/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3f5e7e0e1bb28ff6d17cd246d0d11ca3cbb85631f383d25423ee6843e54833b
3
+ size 14244
checkpoint-7692/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d0767faac71e2e7e1bfc360c83d9ed78d74c8c8b707490b7514ab91c1f5c23f
3
+ size 1064
checkpoint-7692/special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
checkpoint-7692/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-7692/tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
checkpoint-7692/trainer_state.json ADDED
@@ -0,0 +1,1128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.386317253112793,
3
+ "best_model_checkpoint": "./lora-mcqa-model\\checkpoint-2564",
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 7692,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01950078003120125,
13
+ "grad_norm": 1.9830408096313477,
14
+ "learning_rate": 0.00019869994799791993,
15
+ "loss": 1.394,
16
+ "step": 50
17
+ },
18
+ {
19
+ "epoch": 0.0390015600624025,
20
+ "grad_norm": 1.4824576377868652,
21
+ "learning_rate": 0.00019742589703588144,
22
+ "loss": 1.3896,
23
+ "step": 100
24
+ },
25
+ {
26
+ "epoch": 0.05850234009360374,
27
+ "grad_norm": 1.495307445526123,
28
+ "learning_rate": 0.00019612584503380135,
29
+ "loss": 1.3846,
30
+ "step": 150
31
+ },
32
+ {
33
+ "epoch": 0.078003120124805,
34
+ "grad_norm": 1.9779902696609497,
35
+ "learning_rate": 0.00019482579303172127,
36
+ "loss": 1.3801,
37
+ "step": 200
38
+ },
39
+ {
40
+ "epoch": 0.09750390015600624,
41
+ "grad_norm": 1.9127660989761353,
42
+ "learning_rate": 0.00019352574102964121,
43
+ "loss": 1.3866,
44
+ "step": 250
45
+ },
46
+ {
47
+ "epoch": 0.11700468018720749,
48
+ "grad_norm": 1.6987781524658203,
49
+ "learning_rate": 0.0001922256890275611,
50
+ "loss": 1.3873,
51
+ "step": 300
52
+ },
53
+ {
54
+ "epoch": 0.13650546021840873,
55
+ "grad_norm": 1.5772737264633179,
56
+ "learning_rate": 0.00019092563702548102,
57
+ "loss": 1.3981,
58
+ "step": 350
59
+ },
60
+ {
61
+ "epoch": 0.15600624024961,
62
+ "grad_norm": 1.6646242141723633,
63
+ "learning_rate": 0.00018962558502340094,
64
+ "loss": 1.3819,
65
+ "step": 400
66
+ },
67
+ {
68
+ "epoch": 0.17550702028081122,
69
+ "grad_norm": 1.4280552864074707,
70
+ "learning_rate": 0.00018832553302132086,
71
+ "loss": 1.3905,
72
+ "step": 450
73
+ },
74
+ {
75
+ "epoch": 0.19500780031201248,
76
+ "grad_norm": 1.2003318071365356,
77
+ "learning_rate": 0.00018702548101924078,
78
+ "loss": 1.3912,
79
+ "step": 500
80
+ },
81
+ {
82
+ "epoch": 0.21450858034321374,
83
+ "grad_norm": 1.2694647312164307,
84
+ "learning_rate": 0.0001857254290171607,
85
+ "loss": 1.3887,
86
+ "step": 550
87
+ },
88
+ {
89
+ "epoch": 0.23400936037441497,
90
+ "grad_norm": 2.167478084564209,
91
+ "learning_rate": 0.0001844253770150806,
92
+ "loss": 1.3849,
93
+ "step": 600
94
+ },
95
+ {
96
+ "epoch": 0.2535101404056162,
97
+ "grad_norm": 1.689456820487976,
98
+ "learning_rate": 0.00018312532501300053,
99
+ "loss": 1.3918,
100
+ "step": 650
101
+ },
102
+ {
103
+ "epoch": 0.27301092043681746,
104
+ "grad_norm": 1.3930853605270386,
105
+ "learning_rate": 0.00018182527301092045,
106
+ "loss": 1.3892,
107
+ "step": 700
108
+ },
109
+ {
110
+ "epoch": 0.2925117004680187,
111
+ "grad_norm": 1.3363187313079834,
112
+ "learning_rate": 0.00018052522100884036,
113
+ "loss": 1.3896,
114
+ "step": 750
115
+ },
116
+ {
117
+ "epoch": 0.31201248049922,
118
+ "grad_norm": 1.33578360080719,
119
+ "learning_rate": 0.00017922516900676028,
120
+ "loss": 1.3871,
121
+ "step": 800
122
+ },
123
+ {
124
+ "epoch": 0.33151326053042124,
125
+ "grad_norm": 1.5101064443588257,
126
+ "learning_rate": 0.0001779251170046802,
127
+ "loss": 1.3843,
128
+ "step": 850
129
+ },
130
+ {
131
+ "epoch": 0.35101404056162244,
132
+ "grad_norm": 1.1404200792312622,
133
+ "learning_rate": 0.00017662506500260011,
134
+ "loss": 1.3869,
135
+ "step": 900
136
+ },
137
+ {
138
+ "epoch": 0.3705148205928237,
139
+ "grad_norm": 1.2848296165466309,
140
+ "learning_rate": 0.00017532501300052003,
141
+ "loss": 1.3922,
142
+ "step": 950
143
+ },
144
+ {
145
+ "epoch": 0.39001560062402496,
146
+ "grad_norm": 1.8385337591171265,
147
+ "learning_rate": 0.00017402496099843995,
148
+ "loss": 1.389,
149
+ "step": 1000
150
+ },
151
+ {
152
+ "epoch": 0.4095163806552262,
153
+ "grad_norm": 1.3018165826797485,
154
+ "learning_rate": 0.00017272490899635987,
155
+ "loss": 1.385,
156
+ "step": 1050
157
+ },
158
+ {
159
+ "epoch": 0.4290171606864275,
160
+ "grad_norm": 1.3563063144683838,
161
+ "learning_rate": 0.00017142485699427976,
162
+ "loss": 1.3871,
163
+ "step": 1100
164
+ },
165
+ {
166
+ "epoch": 0.4485179407176287,
167
+ "grad_norm": 1.234568476676941,
168
+ "learning_rate": 0.0001701248049921997,
169
+ "loss": 1.382,
170
+ "step": 1150
171
+ },
172
+ {
173
+ "epoch": 0.46801872074882994,
174
+ "grad_norm": 1.41502046585083,
175
+ "learning_rate": 0.00016882475299011962,
176
+ "loss": 1.3885,
177
+ "step": 1200
178
+ },
179
+ {
180
+ "epoch": 0.4875195007800312,
181
+ "grad_norm": 1.309103012084961,
182
+ "learning_rate": 0.00016752470098803954,
183
+ "loss": 1.3942,
184
+ "step": 1250
185
+ },
186
+ {
187
+ "epoch": 0.5070202808112324,
188
+ "grad_norm": 1.4687711000442505,
189
+ "learning_rate": 0.00016622464898595945,
190
+ "loss": 1.3855,
191
+ "step": 1300
192
+ },
193
+ {
194
+ "epoch": 0.5265210608424337,
195
+ "grad_norm": 1.1189204454421997,
196
+ "learning_rate": 0.00016492459698387937,
197
+ "loss": 1.388,
198
+ "step": 1350
199
+ },
200
+ {
201
+ "epoch": 0.5460218408736349,
202
+ "grad_norm": 1.3603004217147827,
203
+ "learning_rate": 0.0001636245449817993,
204
+ "loss": 1.3892,
205
+ "step": 1400
206
+ },
207
+ {
208
+ "epoch": 0.5655226209048362,
209
+ "grad_norm": 1.442458152770996,
210
+ "learning_rate": 0.00016232449297971918,
211
+ "loss": 1.3839,
212
+ "step": 1450
213
+ },
214
+ {
215
+ "epoch": 0.5850234009360374,
216
+ "grad_norm": 0.9751923084259033,
217
+ "learning_rate": 0.00016102444097763912,
218
+ "loss": 1.389,
219
+ "step": 1500
220
+ },
221
+ {
222
+ "epoch": 0.6045241809672387,
223
+ "grad_norm": 0.9651883244514465,
224
+ "learning_rate": 0.00015972438897555904,
225
+ "loss": 1.3842,
226
+ "step": 1550
227
+ },
228
+ {
229
+ "epoch": 0.62402496099844,
230
+ "grad_norm": 0.9299620985984802,
231
+ "learning_rate": 0.00015842433697347893,
232
+ "loss": 1.3869,
233
+ "step": 1600
234
+ },
235
+ {
236
+ "epoch": 0.6435257410296412,
237
+ "grad_norm": 0.9508662819862366,
238
+ "learning_rate": 0.00015712428497139885,
239
+ "loss": 1.3946,
240
+ "step": 1650
241
+ },
242
+ {
243
+ "epoch": 0.6630265210608425,
244
+ "grad_norm": 1.1460316181182861,
245
+ "learning_rate": 0.0001558242329693188,
246
+ "loss": 1.3932,
247
+ "step": 1700
248
+ },
249
+ {
250
+ "epoch": 0.6825273010920437,
251
+ "grad_norm": 1.099560022354126,
252
+ "learning_rate": 0.0001545241809672387,
253
+ "loss": 1.387,
254
+ "step": 1750
255
+ },
256
+ {
257
+ "epoch": 0.7020280811232449,
258
+ "grad_norm": 1.0458426475524902,
259
+ "learning_rate": 0.0001532241289651586,
260
+ "loss": 1.3873,
261
+ "step": 1800
262
+ },
263
+ {
264
+ "epoch": 0.7215288611544461,
265
+ "grad_norm": 1.1988131999969482,
266
+ "learning_rate": 0.00015192407696307852,
267
+ "loss": 1.3831,
268
+ "step": 1850
269
+ },
270
+ {
271
+ "epoch": 0.7410296411856474,
272
+ "grad_norm": 1.167151927947998,
273
+ "learning_rate": 0.00015062402496099846,
274
+ "loss": 1.3865,
275
+ "step": 1900
276
+ },
277
+ {
278
+ "epoch": 0.7605304212168487,
279
+ "grad_norm": 0.9355433583259583,
280
+ "learning_rate": 0.00014932397295891835,
281
+ "loss": 1.3899,
282
+ "step": 1950
283
+ },
284
+ {
285
+ "epoch": 0.7800312012480499,
286
+ "grad_norm": 1.04149329662323,
287
+ "learning_rate": 0.00014802392095683827,
288
+ "loss": 1.3857,
289
+ "step": 2000
290
+ },
291
+ {
292
+ "epoch": 0.7995319812792512,
293
+ "grad_norm": 0.8921425938606262,
294
+ "learning_rate": 0.00014672386895475822,
295
+ "loss": 1.3882,
296
+ "step": 2050
297
+ },
298
+ {
299
+ "epoch": 0.8190327613104524,
300
+ "grad_norm": 1.4201322793960571,
301
+ "learning_rate": 0.0001454238169526781,
302
+ "loss": 1.3885,
303
+ "step": 2100
304
+ },
305
+ {
306
+ "epoch": 0.8385335413416537,
307
+ "grad_norm": 1.2703887224197388,
308
+ "learning_rate": 0.00014412376495059802,
309
+ "loss": 1.3868,
310
+ "step": 2150
311
+ },
312
+ {
313
+ "epoch": 0.858034321372855,
314
+ "grad_norm": 1.2008202075958252,
315
+ "learning_rate": 0.00014282371294851794,
316
+ "loss": 1.3862,
317
+ "step": 2200
318
+ },
319
+ {
320
+ "epoch": 0.8775351014040562,
321
+ "grad_norm": 1.705498456954956,
322
+ "learning_rate": 0.0001415236609464379,
323
+ "loss": 1.3837,
324
+ "step": 2250
325
+ },
326
+ {
327
+ "epoch": 0.8970358814352574,
328
+ "grad_norm": 1.1787363290786743,
329
+ "learning_rate": 0.00014022360894435778,
330
+ "loss": 1.391,
331
+ "step": 2300
332
+ },
333
+ {
334
+ "epoch": 0.9165366614664586,
335
+ "grad_norm": 0.9128132462501526,
336
+ "learning_rate": 0.0001389235569422777,
337
+ "loss": 1.3829,
338
+ "step": 2350
339
+ },
340
+ {
341
+ "epoch": 0.9360374414976599,
342
+ "grad_norm": 1.2079758644104004,
343
+ "learning_rate": 0.0001376235049401976,
344
+ "loss": 1.3879,
345
+ "step": 2400
346
+ },
347
+ {
348
+ "epoch": 0.9555382215288611,
349
+ "grad_norm": 1.4396191835403442,
350
+ "learning_rate": 0.00013632345293811753,
351
+ "loss": 1.3859,
352
+ "step": 2450
353
+ },
354
+ {
355
+ "epoch": 0.9750390015600624,
356
+ "grad_norm": 0.9314255118370056,
357
+ "learning_rate": 0.00013502340093603745,
358
+ "loss": 1.39,
359
+ "step": 2500
360
+ },
361
+ {
362
+ "epoch": 0.9945397815912637,
363
+ "grad_norm": 0.9400072693824768,
364
+ "learning_rate": 0.00013372334893395736,
365
+ "loss": 1.3861,
366
+ "step": 2550
367
+ },
368
+ {
369
+ "epoch": 1.0,
370
+ "eval_loss": 1.386317253112793,
371
+ "eval_runtime": 16.917,
372
+ "eval_samples_per_second": 75.782,
373
+ "eval_steps_per_second": 18.975,
374
+ "step": 2564
375
+ },
376
+ {
377
+ "epoch": 1.0140405616224648,
378
+ "grad_norm": 1.151302456855774,
379
+ "learning_rate": 0.00013242329693187728,
380
+ "loss": 1.3844,
381
+ "step": 2600
382
+ },
383
+ {
384
+ "epoch": 1.033541341653666,
385
+ "grad_norm": 1.0478647947311401,
386
+ "learning_rate": 0.0001311232449297972,
387
+ "loss": 1.3897,
388
+ "step": 2650
389
+ },
390
+ {
391
+ "epoch": 1.0530421216848673,
392
+ "grad_norm": 1.1034784317016602,
393
+ "learning_rate": 0.00012982319292771712,
394
+ "loss": 1.3896,
395
+ "step": 2700
396
+ },
397
+ {
398
+ "epoch": 1.0725429017160686,
399
+ "grad_norm": 0.9335495829582214,
400
+ "learning_rate": 0.00012852314092563703,
401
+ "loss": 1.3879,
402
+ "step": 2750
403
+ },
404
+ {
405
+ "epoch": 1.0920436817472698,
406
+ "grad_norm": 1.020143985748291,
407
+ "learning_rate": 0.00012722308892355695,
408
+ "loss": 1.3892,
409
+ "step": 2800
410
+ },
411
+ {
412
+ "epoch": 1.111544461778471,
413
+ "grad_norm": 1.0304250717163086,
414
+ "learning_rate": 0.00012592303692147687,
415
+ "loss": 1.3872,
416
+ "step": 2850
417
+ },
418
+ {
419
+ "epoch": 1.1310452418096724,
420
+ "grad_norm": 1.080430269241333,
421
+ "learning_rate": 0.0001246229849193968,
422
+ "loss": 1.386,
423
+ "step": 2900
424
+ },
425
+ {
426
+ "epoch": 1.1505460218408736,
427
+ "grad_norm": 1.6232908964157104,
428
+ "learning_rate": 0.0001233229329173167,
429
+ "loss": 1.3822,
430
+ "step": 2950
431
+ },
432
+ {
433
+ "epoch": 1.1700468018720749,
434
+ "grad_norm": 1.36116361618042,
435
+ "learning_rate": 0.00012202288091523661,
436
+ "loss": 1.3874,
437
+ "step": 3000
438
+ },
439
+ {
440
+ "epoch": 1.1895475819032761,
441
+ "grad_norm": 1.1913774013519287,
442
+ "learning_rate": 0.00012072282891315654,
443
+ "loss": 1.3865,
444
+ "step": 3050
445
+ },
446
+ {
447
+ "epoch": 1.2090483619344774,
448
+ "grad_norm": 1.0453519821166992,
449
+ "learning_rate": 0.00011942277691107644,
450
+ "loss": 1.3908,
451
+ "step": 3100
452
+ },
453
+ {
454
+ "epoch": 1.2285491419656787,
455
+ "grad_norm": 1.23416268825531,
456
+ "learning_rate": 0.00011812272490899636,
457
+ "loss": 1.3847,
458
+ "step": 3150
459
+ },
460
+ {
461
+ "epoch": 1.24804992199688,
462
+ "grad_norm": 0.9433267116546631,
463
+ "learning_rate": 0.00011682267290691629,
464
+ "loss": 1.3895,
465
+ "step": 3200
466
+ },
467
+ {
468
+ "epoch": 1.2675507020280812,
469
+ "grad_norm": 1.4030227661132812,
470
+ "learning_rate": 0.00011552262090483621,
471
+ "loss": 1.3889,
472
+ "step": 3250
473
+ },
474
+ {
475
+ "epoch": 1.2870514820592824,
476
+ "grad_norm": 1.1687849760055542,
477
+ "learning_rate": 0.00011422256890275611,
478
+ "loss": 1.3878,
479
+ "step": 3300
480
+ },
481
+ {
482
+ "epoch": 1.3065522620904837,
483
+ "grad_norm": 1.3713322877883911,
484
+ "learning_rate": 0.00011292251690067603,
485
+ "loss": 1.3817,
486
+ "step": 3350
487
+ },
488
+ {
489
+ "epoch": 1.3260530421216847,
490
+ "grad_norm": 1.982105016708374,
491
+ "learning_rate": 0.00011162246489859596,
492
+ "loss": 1.3873,
493
+ "step": 3400
494
+ },
495
+ {
496
+ "epoch": 1.345553822152886,
497
+ "grad_norm": 1.0167853832244873,
498
+ "learning_rate": 0.00011032241289651587,
499
+ "loss": 1.3826,
500
+ "step": 3450
501
+ },
502
+ {
503
+ "epoch": 1.3650546021840873,
504
+ "grad_norm": 1.2796357870101929,
505
+ "learning_rate": 0.00010902236089443578,
506
+ "loss": 1.3894,
507
+ "step": 3500
508
+ },
509
+ {
510
+ "epoch": 1.3845553822152885,
511
+ "grad_norm": 1.0817245244979858,
512
+ "learning_rate": 0.0001077223088923557,
513
+ "loss": 1.3892,
514
+ "step": 3550
515
+ },
516
+ {
517
+ "epoch": 1.4040561622464898,
518
+ "grad_norm": 1.192622184753418,
519
+ "learning_rate": 0.0001064222568902756,
520
+ "loss": 1.3895,
521
+ "step": 3600
522
+ },
523
+ {
524
+ "epoch": 1.423556942277691,
525
+ "grad_norm": 1.1314730644226074,
526
+ "learning_rate": 0.00010512220488819554,
527
+ "loss": 1.388,
528
+ "step": 3650
529
+ },
530
+ {
531
+ "epoch": 1.4430577223088923,
532
+ "grad_norm": 1.026350736618042,
533
+ "learning_rate": 0.00010382215288611545,
534
+ "loss": 1.3827,
535
+ "step": 3700
536
+ },
537
+ {
538
+ "epoch": 1.4625585023400935,
539
+ "grad_norm": 1.116678237915039,
540
+ "learning_rate": 0.00010252210088403537,
541
+ "loss": 1.388,
542
+ "step": 3750
543
+ },
544
+ {
545
+ "epoch": 1.4820592823712948,
546
+ "grad_norm": 0.9644101858139038,
547
+ "learning_rate": 0.00010122204888195527,
548
+ "loss": 1.384,
549
+ "step": 3800
550
+ },
551
+ {
552
+ "epoch": 1.501560062402496,
553
+ "grad_norm": 1.1748864650726318,
554
+ "learning_rate": 9.99219968798752e-05,
555
+ "loss": 1.385,
556
+ "step": 3850
557
+ },
558
+ {
559
+ "epoch": 1.5210608424336973,
560
+ "grad_norm": 1.0787124633789062,
561
+ "learning_rate": 9.862194487779511e-05,
562
+ "loss": 1.3812,
563
+ "step": 3900
564
+ },
565
+ {
566
+ "epoch": 1.5405616224648986,
567
+ "grad_norm": 1.315277099609375,
568
+ "learning_rate": 9.732189287571504e-05,
569
+ "loss": 1.3858,
570
+ "step": 3950
571
+ },
572
+ {
573
+ "epoch": 1.5600624024960998,
574
+ "grad_norm": 1.0303170680999756,
575
+ "learning_rate": 9.602184087363494e-05,
576
+ "loss": 1.3911,
577
+ "step": 4000
578
+ },
579
+ {
580
+ "epoch": 1.579563182527301,
581
+ "grad_norm": 1.4852935075759888,
582
+ "learning_rate": 9.472178887155486e-05,
583
+ "loss": 1.3842,
584
+ "step": 4050
585
+ },
586
+ {
587
+ "epoch": 1.5990639625585024,
588
+ "grad_norm": 1.1838001012802124,
589
+ "learning_rate": 9.344773790951638e-05,
590
+ "loss": 1.3883,
591
+ "step": 4100
592
+ },
593
+ {
594
+ "epoch": 1.6185647425897036,
595
+ "grad_norm": 1.374031662940979,
596
+ "learning_rate": 9.21476859074363e-05,
597
+ "loss": 1.3914,
598
+ "step": 4150
599
+ },
600
+ {
601
+ "epoch": 1.6380655226209049,
602
+ "grad_norm": 0.98434978723526,
603
+ "learning_rate": 9.084763390535622e-05,
604
+ "loss": 1.3883,
605
+ "step": 4200
606
+ },
607
+ {
608
+ "epoch": 1.6575663026521061,
609
+ "grad_norm": 1.2400907278060913,
610
+ "learning_rate": 8.954758190327614e-05,
611
+ "loss": 1.3924,
612
+ "step": 4250
613
+ },
614
+ {
615
+ "epoch": 1.6770670826833074,
616
+ "grad_norm": 0.9704477787017822,
617
+ "learning_rate": 8.824752990119605e-05,
618
+ "loss": 1.3915,
619
+ "step": 4300
620
+ },
621
+ {
622
+ "epoch": 1.6965678627145087,
623
+ "grad_norm": 0.9739221930503845,
624
+ "learning_rate": 8.694747789911597e-05,
625
+ "loss": 1.3907,
626
+ "step": 4350
627
+ },
628
+ {
629
+ "epoch": 1.71606864274571,
630
+ "grad_norm": 1.2051200866699219,
631
+ "learning_rate": 8.564742589703589e-05,
632
+ "loss": 1.3812,
633
+ "step": 4400
634
+ },
635
+ {
636
+ "epoch": 1.7355694227769112,
637
+ "grad_norm": 0.976754903793335,
638
+ "learning_rate": 8.43473738949558e-05,
639
+ "loss": 1.3872,
640
+ "step": 4450
641
+ },
642
+ {
643
+ "epoch": 1.7550702028081124,
644
+ "grad_norm": 1.115320086479187,
645
+ "learning_rate": 8.304732189287572e-05,
646
+ "loss": 1.3873,
647
+ "step": 4500
648
+ },
649
+ {
650
+ "epoch": 1.7745709828393137,
651
+ "grad_norm": 1.04775869846344,
652
+ "learning_rate": 8.174726989079563e-05,
653
+ "loss": 1.3857,
654
+ "step": 4550
655
+ },
656
+ {
657
+ "epoch": 1.794071762870515,
658
+ "grad_norm": 1.0488988161087036,
659
+ "learning_rate": 8.044721788871556e-05,
660
+ "loss": 1.3851,
661
+ "step": 4600
662
+ },
663
+ {
664
+ "epoch": 1.8135725429017162,
665
+ "grad_norm": 1.1655857563018799,
666
+ "learning_rate": 7.914716588663546e-05,
667
+ "loss": 1.383,
668
+ "step": 4650
669
+ },
670
+ {
671
+ "epoch": 1.8330733229329175,
672
+ "grad_norm": 1.433255910873413,
673
+ "learning_rate": 7.784711388455539e-05,
674
+ "loss": 1.3864,
675
+ "step": 4700
676
+ },
677
+ {
678
+ "epoch": 1.8525741029641187,
679
+ "grad_norm": 1.045211672782898,
680
+ "learning_rate": 7.65470618824753e-05,
681
+ "loss": 1.3877,
682
+ "step": 4750
683
+ },
684
+ {
685
+ "epoch": 1.8720748829953198,
686
+ "grad_norm": 1.2182040214538574,
687
+ "learning_rate": 7.524700988039521e-05,
688
+ "loss": 1.3812,
689
+ "step": 4800
690
+ },
691
+ {
692
+ "epoch": 1.891575663026521,
693
+ "grad_norm": 1.1119019985198975,
694
+ "learning_rate": 7.394695787831513e-05,
695
+ "loss": 1.3874,
696
+ "step": 4850
697
+ },
698
+ {
699
+ "epoch": 1.9110764430577223,
700
+ "grad_norm": 1.2834023237228394,
701
+ "learning_rate": 7.264690587623505e-05,
702
+ "loss": 1.3887,
703
+ "step": 4900
704
+ },
705
+ {
706
+ "epoch": 1.9305772230889235,
707
+ "grad_norm": 1.3699750900268555,
708
+ "learning_rate": 7.134685387415497e-05,
709
+ "loss": 1.3833,
710
+ "step": 4950
711
+ },
712
+ {
713
+ "epoch": 1.9500780031201248,
714
+ "grad_norm": 1.0018161535263062,
715
+ "learning_rate": 7.004680187207488e-05,
716
+ "loss": 1.3847,
717
+ "step": 5000
718
+ },
719
+ {
720
+ "epoch": 1.969578783151326,
721
+ "grad_norm": 1.7948187589645386,
722
+ "learning_rate": 6.87467498699948e-05,
723
+ "loss": 1.3799,
724
+ "step": 5050
725
+ },
726
+ {
727
+ "epoch": 1.9890795631825273,
728
+ "grad_norm": 1.2683899402618408,
729
+ "learning_rate": 6.744669786791472e-05,
730
+ "loss": 1.3878,
731
+ "step": 5100
732
+ },
733
+ {
734
+ "epoch": 2.0,
735
+ "eval_loss": 1.3883001804351807,
736
+ "eval_runtime": 16.7843,
737
+ "eval_samples_per_second": 76.381,
738
+ "eval_steps_per_second": 19.125,
739
+ "step": 5128
740
+ },
741
+ {
742
+ "epoch": 2.0085803432137284,
743
+ "grad_norm": 1.0674426555633545,
744
+ "learning_rate": 6.614664586583464e-05,
745
+ "loss": 1.385,
746
+ "step": 5150
747
+ },
748
+ {
749
+ "epoch": 2.0280811232449296,
750
+ "grad_norm": 2.8433749675750732,
751
+ "learning_rate": 6.484659386375455e-05,
752
+ "loss": 1.3951,
753
+ "step": 5200
754
+ },
755
+ {
756
+ "epoch": 2.047581903276131,
757
+ "grad_norm": 1.4678908586502075,
758
+ "learning_rate": 6.354654186167447e-05,
759
+ "loss": 1.3832,
760
+ "step": 5250
761
+ },
762
+ {
763
+ "epoch": 2.067082683307332,
764
+ "grad_norm": 1.1326549053192139,
765
+ "learning_rate": 6.224648985959438e-05,
766
+ "loss": 1.3886,
767
+ "step": 5300
768
+ },
769
+ {
770
+ "epoch": 2.0865834633385334,
771
+ "grad_norm": 1.351509690284729,
772
+ "learning_rate": 6.094643785751431e-05,
773
+ "loss": 1.3835,
774
+ "step": 5350
775
+ },
776
+ {
777
+ "epoch": 2.1060842433697347,
778
+ "grad_norm": 1.6677987575531006,
779
+ "learning_rate": 5.964638585543422e-05,
780
+ "loss": 1.387,
781
+ "step": 5400
782
+ },
783
+ {
784
+ "epoch": 2.125585023400936,
785
+ "grad_norm": 1.6974619626998901,
786
+ "learning_rate": 5.834633385335414e-05,
787
+ "loss": 1.395,
788
+ "step": 5450
789
+ },
790
+ {
791
+ "epoch": 2.145085803432137,
792
+ "grad_norm": 1.0266507863998413,
793
+ "learning_rate": 5.704628185127405e-05,
794
+ "loss": 1.3881,
795
+ "step": 5500
796
+ },
797
+ {
798
+ "epoch": 2.1645865834633384,
799
+ "grad_norm": 1.1399188041687012,
800
+ "learning_rate": 5.574622984919396e-05,
801
+ "loss": 1.3826,
802
+ "step": 5550
803
+ },
804
+ {
805
+ "epoch": 2.1840873634945397,
806
+ "grad_norm": 1.5752311944961548,
807
+ "learning_rate": 5.444617784711389e-05,
808
+ "loss": 1.3744,
809
+ "step": 5600
810
+ },
811
+ {
812
+ "epoch": 2.203588143525741,
813
+ "grad_norm": 1.1733818054199219,
814
+ "learning_rate": 5.31461258450338e-05,
815
+ "loss": 1.3851,
816
+ "step": 5650
817
+ },
818
+ {
819
+ "epoch": 2.223088923556942,
820
+ "grad_norm": 2.550503969192505,
821
+ "learning_rate": 5.184607384295372e-05,
822
+ "loss": 1.386,
823
+ "step": 5700
824
+ },
825
+ {
826
+ "epoch": 2.2425897035881435,
827
+ "grad_norm": 2.088324785232544,
828
+ "learning_rate": 5.054602184087363e-05,
829
+ "loss": 1.3871,
830
+ "step": 5750
831
+ },
832
+ {
833
+ "epoch": 2.2620904836193447,
834
+ "grad_norm": 1.282410740852356,
835
+ "learning_rate": 4.924596983879356e-05,
836
+ "loss": 1.3835,
837
+ "step": 5800
838
+ },
839
+ {
840
+ "epoch": 2.281591263650546,
841
+ "grad_norm": 1.6578506231307983,
842
+ "learning_rate": 4.7945917836713475e-05,
843
+ "loss": 1.3833,
844
+ "step": 5850
845
+ },
846
+ {
847
+ "epoch": 2.3010920436817472,
848
+ "grad_norm": 1.0126018524169922,
849
+ "learning_rate": 4.664586583463339e-05,
850
+ "loss": 1.3823,
851
+ "step": 5900
852
+ },
853
+ {
854
+ "epoch": 2.3205928237129485,
855
+ "grad_norm": 2.126206159591675,
856
+ "learning_rate": 4.53458138325533e-05,
857
+ "loss": 1.3819,
858
+ "step": 5950
859
+ },
860
+ {
861
+ "epoch": 2.3400936037441498,
862
+ "grad_norm": 1.1407690048217773,
863
+ "learning_rate": 4.404576183047322e-05,
864
+ "loss": 1.3775,
865
+ "step": 6000
866
+ },
867
+ {
868
+ "epoch": 2.359594383775351,
869
+ "grad_norm": 0.950842022895813,
870
+ "learning_rate": 4.274570982839314e-05,
871
+ "loss": 1.3832,
872
+ "step": 6050
873
+ },
874
+ {
875
+ "epoch": 2.3790951638065523,
876
+ "grad_norm": Infinity,
877
+ "learning_rate": 4.147165886635466e-05,
878
+ "loss": 1.396,
879
+ "step": 6100
880
+ },
881
+ {
882
+ "epoch": 2.3985959438377535,
883
+ "grad_norm": 1.2606666088104248,
884
+ "learning_rate": 4.017160686427458e-05,
885
+ "loss": 1.3904,
886
+ "step": 6150
887
+ },
888
+ {
889
+ "epoch": 2.418096723868955,
890
+ "grad_norm": 1.041694164276123,
891
+ "learning_rate": 3.887155486219449e-05,
892
+ "loss": 1.3736,
893
+ "step": 6200
894
+ },
895
+ {
896
+ "epoch": 2.437597503900156,
897
+ "grad_norm": 0.8443174362182617,
898
+ "learning_rate": 3.7571502860114405e-05,
899
+ "loss": 1.3889,
900
+ "step": 6250
901
+ },
902
+ {
903
+ "epoch": 2.4570982839313573,
904
+ "grad_norm": 1.0350373983383179,
905
+ "learning_rate": 3.627145085803432e-05,
906
+ "loss": 1.3852,
907
+ "step": 6300
908
+ },
909
+ {
910
+ "epoch": 2.4765990639625586,
911
+ "grad_norm": 1.169245958328247,
912
+ "learning_rate": 3.497139885595424e-05,
913
+ "loss": 1.3916,
914
+ "step": 6350
915
+ },
916
+ {
917
+ "epoch": 2.49609984399376,
918
+ "grad_norm": 1.7383908033370972,
919
+ "learning_rate": 3.367134685387416e-05,
920
+ "loss": 1.3808,
921
+ "step": 6400
922
+ },
923
+ {
924
+ "epoch": 2.515600624024961,
925
+ "grad_norm": 1.8447555303573608,
926
+ "learning_rate": 3.237129485179407e-05,
927
+ "loss": 1.3826,
928
+ "step": 6450
929
+ },
930
+ {
931
+ "epoch": 2.5351014040561624,
932
+ "grad_norm": 1.236523151397705,
933
+ "learning_rate": 3.1071242849713986e-05,
934
+ "loss": 1.3744,
935
+ "step": 6500
936
+ },
937
+ {
938
+ "epoch": 2.5546021840873636,
939
+ "grad_norm": 1.1100080013275146,
940
+ "learning_rate": 2.9771190847633907e-05,
941
+ "loss": 1.3856,
942
+ "step": 6550
943
+ },
944
+ {
945
+ "epoch": 2.574102964118565,
946
+ "grad_norm": 2.6339101791381836,
947
+ "learning_rate": 2.8471138845553824e-05,
948
+ "loss": 1.4006,
949
+ "step": 6600
950
+ },
951
+ {
952
+ "epoch": 2.593603744149766,
953
+ "grad_norm": 1.040090799331665,
954
+ "learning_rate": 2.7171086843473742e-05,
955
+ "loss": 1.3847,
956
+ "step": 6650
957
+ },
958
+ {
959
+ "epoch": 2.6131045241809674,
960
+ "grad_norm": 1.2017114162445068,
961
+ "learning_rate": 2.5871034841393656e-05,
962
+ "loss": 1.3929,
963
+ "step": 6700
964
+ },
965
+ {
966
+ "epoch": 2.6326053042121687,
967
+ "grad_norm": 1.175416111946106,
968
+ "learning_rate": 2.4570982839313573e-05,
969
+ "loss": 1.3807,
970
+ "step": 6750
971
+ },
972
+ {
973
+ "epoch": 2.6521060842433695,
974
+ "grad_norm": 1.074458360671997,
975
+ "learning_rate": 2.327093083723349e-05,
976
+ "loss": 1.402,
977
+ "step": 6800
978
+ },
979
+ {
980
+ "epoch": 2.6716068642745707,
981
+ "grad_norm": 1.0837610960006714,
982
+ "learning_rate": 2.1970878835153408e-05,
983
+ "loss": 1.394,
984
+ "step": 6850
985
+ },
986
+ {
987
+ "epoch": 2.691107644305772,
988
+ "grad_norm": 1.3517810106277466,
989
+ "learning_rate": 2.0670826833073322e-05,
990
+ "loss": 1.3884,
991
+ "step": 6900
992
+ },
993
+ {
994
+ "epoch": 2.7106084243369732,
995
+ "grad_norm": 0.9812959432601929,
996
+ "learning_rate": 1.937077483099324e-05,
997
+ "loss": 1.3785,
998
+ "step": 6950
999
+ },
1000
+ {
1001
+ "epoch": 2.7301092043681745,
1002
+ "grad_norm": 1.0006356239318848,
1003
+ "learning_rate": 1.8070722828913157e-05,
1004
+ "loss": 1.3773,
1005
+ "step": 7000
1006
+ },
1007
+ {
1008
+ "epoch": 2.7496099843993758,
1009
+ "grad_norm": 1.3178588151931763,
1010
+ "learning_rate": 1.6770670826833075e-05,
1011
+ "loss": 1.3865,
1012
+ "step": 7050
1013
+ },
1014
+ {
1015
+ "epoch": 2.769110764430577,
1016
+ "grad_norm": 1.4253509044647217,
1017
+ "learning_rate": 1.5470618824752992e-05,
1018
+ "loss": 1.3676,
1019
+ "step": 7100
1020
+ },
1021
+ {
1022
+ "epoch": 2.7886115444617783,
1023
+ "grad_norm": 1.2045459747314453,
1024
+ "learning_rate": 1.4170566822672906e-05,
1025
+ "loss": 1.391,
1026
+ "step": 7150
1027
+ },
1028
+ {
1029
+ "epoch": 2.8081123244929795,
1030
+ "grad_norm": 1.6241490840911865,
1031
+ "learning_rate": 1.2870514820592824e-05,
1032
+ "loss": 1.3934,
1033
+ "step": 7200
1034
+ },
1035
+ {
1036
+ "epoch": 2.827613104524181,
1037
+ "grad_norm": 1.3262916803359985,
1038
+ "learning_rate": 1.1570462818512741e-05,
1039
+ "loss": 1.3883,
1040
+ "step": 7250
1041
+ },
1042
+ {
1043
+ "epoch": 2.847113884555382,
1044
+ "grad_norm": 1.2156164646148682,
1045
+ "learning_rate": 1.0270410816432657e-05,
1046
+ "loss": 1.375,
1047
+ "step": 7300
1048
+ },
1049
+ {
1050
+ "epoch": 2.8666146645865833,
1051
+ "grad_norm": 1.203420877456665,
1052
+ "learning_rate": 8.970358814352575e-06,
1053
+ "loss": 1.3872,
1054
+ "step": 7350
1055
+ },
1056
+ {
1057
+ "epoch": 2.8861154446177846,
1058
+ "grad_norm": 1.2399318218231201,
1059
+ "learning_rate": 7.670306812272492e-06,
1060
+ "loss": 1.3845,
1061
+ "step": 7400
1062
+ },
1063
+ {
1064
+ "epoch": 2.905616224648986,
1065
+ "grad_norm": 1.0349050760269165,
1066
+ "learning_rate": 6.370254810192408e-06,
1067
+ "loss": 1.3773,
1068
+ "step": 7450
1069
+ },
1070
+ {
1071
+ "epoch": 2.925117004680187,
1072
+ "grad_norm": 1.736341118812561,
1073
+ "learning_rate": 5.070202808112324e-06,
1074
+ "loss": 1.3739,
1075
+ "step": 7500
1076
+ },
1077
+ {
1078
+ "epoch": 2.9446177847113884,
1079
+ "grad_norm": 1.072678804397583,
1080
+ "learning_rate": 3.770150806032242e-06,
1081
+ "loss": 1.3998,
1082
+ "step": 7550
1083
+ },
1084
+ {
1085
+ "epoch": 2.9641185647425896,
1086
+ "grad_norm": 0.9114436507225037,
1087
+ "learning_rate": 2.470098803952158e-06,
1088
+ "loss": 1.3868,
1089
+ "step": 7600
1090
+ },
1091
+ {
1092
+ "epoch": 2.983619344773791,
1093
+ "grad_norm": 2.6503679752349854,
1094
+ "learning_rate": 1.170046801872075e-06,
1095
+ "loss": 1.3844,
1096
+ "step": 7650
1097
+ },
1098
+ {
1099
+ "epoch": 3.0,
1100
+ "eval_loss": 1.3892767429351807,
1101
+ "eval_runtime": 16.8322,
1102
+ "eval_samples_per_second": 76.164,
1103
+ "eval_steps_per_second": 19.071,
1104
+ "step": 7692
1105
+ }
1106
+ ],
1107
+ "logging_steps": 50,
1108
+ "max_steps": 7692,
1109
+ "num_input_tokens_seen": 0,
1110
+ "num_train_epochs": 3,
1111
+ "save_steps": 500,
1112
+ "stateful_callbacks": {
1113
+ "TrainerControl": {
1114
+ "args": {
1115
+ "should_epoch_stop": false,
1116
+ "should_evaluate": false,
1117
+ "should_log": false,
1118
+ "should_save": true,
1119
+ "should_training_stop": true
1120
+ },
1121
+ "attributes": {}
1122
+ }
1123
+ },
1124
+ "total_flos": 3.248993509945344e+16,
1125
+ "train_batch_size": 4,
1126
+ "trial_name": null,
1127
+ "trial_params": null
1128
+ }
checkpoint-7692/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44ca3034cf87097f30254f9aacafe4cc22fa749525bb201546c79db28d1797eb
3
+ size 5240
checkpoint-7692/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff