Update weights and training params
Browse filesUpdate the weights and training args after retraining with more negative samples
- model.safetensors +1 -1
- training_args.txt +2 -2
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 498604904
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d14a1076b356024cbd18766d19bd907d6df0d48a6f219687e092058951a39b8e
|
| 3 |
size 498604904
|
training_args.txt
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
step =
|
| 2 |
_metadata = ContainerMetadata(ref_type=typing.Any, object_type=<class 'dict'>, optional=True, key=None, flags={}, flags_root=False, resolver_cache=defaultdict(<class 'dict'>, {}), key_type=typing.Any, element_type=typing.Any)
|
| 3 |
_parent = None
|
| 4 |
_flags_cache = {'struct': None}
|
| 5 |
-
_content = {'project_name': 'coq-theorem-embedding', 'experiment_name': '
|
|
|
|
| 1 |
+
step = 20000
|
| 2 |
_metadata = ContainerMetadata(ref_type=typing.Any, object_type=<class 'dict'>, optional=True, key=None, flags={}, flags_root=False, resolver_cache=defaultdict(<class 'dict'>, {}), key_type=typing.Any, element_type=typing.Any)
|
| 3 |
_parent = None
|
| 4 |
_flags_cache = {'struct': None}
|
| 5 |
+
_content = {'project_name': 'coq-theorem-embedding', 'experiment_name': 'test-run-many-negatives', 'log_level': 'INFO', 'dataset': {'dataset_path': './data/', 'rankin_ds_path_statements': './data/imm/basic/Events_statements.json', 'rankin_ds_path_references': './sanityCheckSet/reference_premises.json', 'samples_from_single_anchor': 300, 'train_split': 0.7, 'val_split': 0.2, 'test_split': 0.1}, 'base_model_name': 'microsoft/codebert-base', 'max_seq_length': 128, 'embedding_dim': 768, 'threshold_pos': 0.3, 'threshold_neg': 0.65, 'threshold_hard_neg': 0.45, 'k_negatives': 100, 'steps': 22000, 'batch_size': 16, 'warmup_ratio': 0.1, 'learning_rate': 4e-06, 'random_seed': 52, 'wandb': {'enabled': True, 'project': 'coq-embeddings', 'entity': 'kozyrev-andreiii2016', 'tags': ['dyn-lr', 'InfoNCE', 'hard-negatives', 'codebert']}, 'evaluation': {'output_dir': './checkpoints/', 'save_freq': 1000, 'eval_steps': 200, 'evaluate_freq': 200, 'k_values': [5, 10], 'f_score_beta': 1, 'query_size_in_eval': 20}}
|