File size: 7,210 Bytes
2a5693e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# Copyright 2020 - 2022 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from utils.data_utils import get_loader
from utils.textswin_unetr import TextSwinUNETR
import os
import time
import torch
import torch.nn.parallel
import torch.utils.data.distributed
from utils.utils import AverageMeter
from monai.utils.enums import MetricReduction
from monai.metrics import DiceMetric, HausdorffDistanceMetric
parser = argparse.ArgumentParser(description="TextBraTS segmentation pipeline")
parser.add_argument("--data_dir", default="./data/TextBraTSData", type=str, help="dataset directory")
parser.add_argument("--exp_name", default="TextBraTS", type=str, help="experiment name")
parser.add_argument("--json_list", default="Test.json", type=str, help="dataset json file")
parser.add_argument("--fold", default=0, type=int, help="data fold")
parser.add_argument("--pretrained_model_name", default="model.pt", type=str, help="pretrained model name")
parser.add_argument("--feature_size", default=48, type=int, help="feature size")
parser.add_argument("--infer_overlap", default=0.6, type=float, help="sliding window inference overlap")
parser.add_argument("--in_channels", default=4, type=int, help="number of input channels")
parser.add_argument("--out_channels", default=3, type=int, help="number of output channels")
parser.add_argument("--a_min", default=-175.0, type=float, help="a_min in ScaleIntensityRanged")
parser.add_argument("--a_max", default=250.0, type=float, help="a_max in ScaleIntensityRanged")
parser.add_argument("--b_min", default=0.0, type=float, help="b_min in ScaleIntensityRanged")
parser.add_argument("--b_max", default=1.0, type=float, help="b_max in ScaleIntensityRanged")
parser.add_argument("--space_x", default=1.5, type=float, help="spacing in x direction")
parser.add_argument("--space_y", default=1.5, type=float, help="spacing in y direction")
parser.add_argument("--space_z", default=2.0, type=float, help="spacing in z direction")
parser.add_argument("--roi_x", default=128, type=int, help="roi size in x direction")
parser.add_argument("--roi_y", default=128, type=int, help="roi size in y direction")
parser.add_argument("--roi_z", default=128, type=int, help="roi size in z direction")
parser.add_argument("--dropout_rate", default=0.0, type=float, help="dropout rate")
parser.add_argument("--distributed", action="store_true", help="start distributed training")
parser.add_argument("--workers", default=8, type=int, help="number of workers")
parser.add_argument("--RandScaleIntensityd_prob", default=0.1, type=float, help="RandScaleIntensityd aug probability")
parser.add_argument("--RandShiftIntensityd_prob", default=0.1, type=float, help="RandShiftIntensityd aug probability")
parser.add_argument("--spatial_dims", default=3, type=int, help="spatial dimension of input data")
parser.add_argument("--use_checkpoint", action="store_true", help="use gradient checkpointing to save memory")
parser.add_argument(
"--pretrained_dir",
default="./runs/TextBraTS/",
type=str,
help="pretrained checkpoint directory",
)
def main():
args = parser.parse_args()
args.test_mode = True
output_directory = "./outputs/" + args.exp_name
if not os.path.exists(output_directory):
os.makedirs(output_directory)
test_loader = get_loader(args)
pretrained_dir = args.pretrained_dir
model_name = args.pretrained_model_name
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pretrained_pth = os.path.join(pretrained_dir, model_name)
model = TextSwinUNETR(
img_size=128,
in_channels=args.in_channels,
out_channels=args.out_channels,
feature_size=args.feature_size,
drop_rate=0.0,
attn_drop_rate=0.0,
dropout_path_rate=0.0,
use_checkpoint=args.use_checkpoint,
text_dim=768,
)
model_dict = torch.load(pretrained_pth)["state_dict"]
model.load_state_dict(model_dict, strict=False)
model.eval()
model.to(device)
def val_epoch(model, loader, acc_func, hd95_func):
model.eval()
start_time = time.time()
run_acc = AverageMeter()
run_hd95 = AverageMeter()
with torch.no_grad():
for idx, batch_data in enumerate(loader):
data, target, text = batch_data["image"], batch_data["label"], batch_data["text_feature"]
data, target, text = data.cuda(), target.cuda(), text.cuda()
logits = model(data,text)
prob = torch.sigmoid(logits)
prob = (prob > 0.5).int()
acc_func(y_pred=prob, y=target)
acc, not_nans = acc_func.aggregate()
acc = acc.cuda()
run_acc.update(acc.cpu().numpy(), n=not_nans.cpu().numpy())
# HD95 Metric
hd95_func(y_pred=prob, y=target)
hd95 = hd95_func.aggregate() # Assuming it returns a single value
run_hd95.update(hd95.cpu().numpy())
Dice_TC = run_acc.avg[0]
Dice_WT = run_acc.avg[1]
Dice_ET = run_acc.avg[2]
HD95_TC = run_hd95.avg[0]
HD95_WT = run_hd95.avg[1]
HD95_ET = run_hd95.avg[2]
print(
"Val {}/{}".format(idx, len(loader)),
", Dice_TC:", Dice_TC,
", Dice_WT:", Dice_WT,
", Dice_ET:", Dice_ET,
", Avg Dice:", (Dice_ET + Dice_TC + Dice_WT) / 3,
", HD95_TC:", HD95_TC,
", HD95_WT:", HD95_WT,
", HD95_ET:", HD95_ET,
", Avg HD95:", (HD95_ET + HD95_TC + HD95_WT) / 3,
", time {:.2f}s".format(time.time() - start_time),
)
start_time = time.time()
with open(output_directory+'/log.txt', "a") as log_file:
log_file.write(f"Experiment name:{args.pretrained_dir.split('/')[-2]}, "
f"Final Validation Results - Dice_TC: {Dice_TC}, Dice_WT: {Dice_WT}, Dice_ET: {Dice_ET}, "
f"Avg Dice: {(Dice_ET + Dice_TC + Dice_WT) / 3}, "
f"HD95_TC: {HD95_TC}, HD95_WT: {HD95_WT}, HD95_ET: {HD95_ET}, "
f"Avg HD95: {(HD95_ET + HD95_TC + HD95_WT) / 3}\n")
return run_acc.avg
dice_acc = DiceMetric(include_background=True, reduction=MetricReduction.MEAN_BATCH, get_not_nans=True)
hd95_acc = HausdorffDistanceMetric(include_background=True, reduction=MetricReduction.MEAN_BATCH, percentile=95.0)
val_epoch(model, test_loader, acc_func=dice_acc,hd95_func=hd95_acc)
if __name__ == "__main__":
main()
|