File size: 6,916 Bytes
2a5693e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright 2020 - 2022 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import math
import os

import numpy as np
import torch

from monai import data, transforms
from monai.data import NibabelReader
from monai.transforms import MapTransform

#Load biobert features
class LoadNumpyd(MapTransform):
    def __init__(self, keys):
        super().__init__(keys)

    def __call__(self, data):
        d = dict(data)
        for key in self.keys:
            d[key] = np.load(d[key])
            d[key] = np.squeeze(d[key],axis=0)
        return d

class Sampler(torch.utils.data.Sampler):
    def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, make_even=True):
        if num_replicas is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = torch.distributed.get_world_size()
        if rank is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = torch.distributed.get_rank()
        self.shuffle = shuffle
        self.make_even = make_even
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
        self.total_size = self.num_samples * self.num_replicas
        indices = list(range(len(self.dataset)))
        self.valid_length = len(indices[self.rank : self.total_size : self.num_replicas])

    def __iter__(self):
        if self.shuffle:
            g = torch.Generator()
            g.manual_seed(self.epoch)
            indices = torch.randperm(len(self.dataset), generator=g).tolist()
        else:
            indices = list(range(len(self.dataset)))
        if self.make_even:
            if len(indices) < self.total_size:
                if self.total_size - len(indices) < len(indices):
                    indices += indices[: (self.total_size - len(indices))]
                else:
                    extra_ids = np.random.randint(low=0, high=len(indices), size=self.total_size - len(indices))
                    indices += [indices[ids] for ids in extra_ids]
            assert len(indices) == self.total_size
        indices = indices[self.rank : self.total_size : self.num_replicas]
        self.num_samples = len(indices)
        return iter(indices)

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch


def datafold_read(datalist, basedir, fold=0, key="training"):
    with open(datalist) as f:
        json_data = json.load(f)

    json_data = json_data[key]

    for d in json_data:
        for k, v in d.items():
            if isinstance(d[k], list):
                d[k] = [os.path.join(basedir, iv) for iv in d[k]]
            elif isinstance(d[k], str):
                d[k] = os.path.join(basedir, d[k]) if len(d[k]) > 0 else d[k]
    tr = []
    val = []
    for d in json_data:
        if "fold" in d and d["fold"] == fold:
            val.append(d)
        else:
            tr.append(d)
    return tr, val


def get_loader(args):
    data_dir = args.data_dir
    datalist_json = args.json_list
    train_files, validation_files = datafold_read(datalist=datalist_json, basedir=data_dir, fold=args.fold)
    train_transform = transforms.Compose(
        [
            transforms.LoadImaged(keys=["image", "label"],reader=NibabelReader()),
            LoadNumpyd(keys=["text_feature"]),
            transforms.ConvertToMultiChannelBasedOnBratsClassesd(keys="label"),
            transforms.Resized(keys=["image","label"],spatial_size=[args.roi_x,args.roi_y,args.roi_z]),
            transforms.NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),
            transforms.RandScaleIntensityd(keys="image", factors=0.1, prob=1.0),
            transforms.RandShiftIntensityd(keys="image", offsets=0.1, prob=1.0),
            transforms.ToTensord(keys=["image", "label", "text_feature"]),
        ]
    )
    val_transform = transforms.Compose(
        [
            transforms.LoadImaged(keys=["image", "label"],reader=NibabelReader()),
            LoadNumpyd(keys=["text_feature"]),
            transforms.ConvertToMultiChannelBasedOnBratsClassesd(keys="label"),
            transforms.Resized(keys=["image", "label"], spatial_size=[args.roi_x, args.roi_y, args.roi_z]),
            transforms.NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),
            transforms.ToTensord(keys=["image", "label", "text_feature"]),
        ]
    )

    test_transform = transforms.Compose(
        [
            transforms.LoadImaged(keys=["image", "label"],reader=NibabelReader()),
            LoadNumpyd(keys=["text_feature"]),
            transforms.ConvertToMultiChannelBasedOnBratsClassesd(keys="label"),
            transforms.Resized(keys=["image", "label"], spatial_size=[args.roi_x, args.roi_y, args.roi_z]),
            transforms.NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),
            transforms.ToTensord(keys=["image", "label", "text_feature"]),
        ]
    )

    if args.test_mode:
        val_ds = data.Dataset(data=validation_files, transform=test_transform)
        val_sampler = Sampler(val_ds, shuffle=False) if args.distributed else None
        test_loader = data.DataLoader(
            val_ds, batch_size=1, shuffle=False, num_workers=args.workers, sampler=val_sampler, pin_memory=True
        )

        loader = test_loader
    else:
        train_ds = data.Dataset(data=train_files, transform=train_transform)

        train_sampler = Sampler(train_ds) if args.distributed else None
        train_loader = data.DataLoader(
            train_ds,
            batch_size=args.batch_size,
            shuffle=(train_sampler is None),
            num_workers=args.workers,
            sampler=train_sampler,
            pin_memory=True,
        )
        val_ds = data.Dataset(data=validation_files, transform=val_transform)
        val_sampler = Sampler(val_ds, shuffle=False) if args.distributed else None
        val_loader = data.DataLoader(
            val_ds, batch_size=1, shuffle=False, num_workers=args.workers, sampler=val_sampler, pin_memory=True
        )
        loader = [train_loader, val_loader]

    return loader