File size: 43,032 Bytes
2a5693e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 |
# Copyright 2020 - 2022 -> (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Sequence, Tuple, Type, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from torch.nn import LayerNorm
from monai.networks.blocks import MLPBlock as Mlp
from monai.networks.blocks import PatchEmbed, UnetOutBlock, UnetrBasicBlock, UnetrUpBlock
from monai.networks.layers import DropPath, trunc_normal_
from monai.utils import ensure_tuple_rep, optional_import
import math
rearrange, _ = optional_import("einops", name="rearrange")
class TextSwinUNETR(nn.Module):
"""
Swin UNETR based on: "Hatamizadeh et al.,
Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images
<https://arxiv.org/abs/2201.01266>"
"""
def __init__(
self,
img_size: Union[Sequence[int], int],
in_channels: int,
out_channels: int,
text_dim: int,
depths: Sequence[int] = (2, 2, 2, 2),
num_heads: Sequence[int] = (3, 6, 12, 24),
feature_size: int = 24,
norm_name: Union[Tuple, str] = "instance",
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
dropout_path_rate: float = 0.0,
normalize: bool = True,
use_checkpoint: bool = False,
spatial_dims: int = 3,
) -> None:
"""
Args:
img_size: dimension of input image.
in_channels: dimension of input channels.
out_channels: dimension of output channels.
feature_size: dimension of network feature size.
depths: number of layers in each stage.
num_heads: number of attention heads.
norm_name: feature normalization type and arguments.
drop_rate: dropout rate.
attn_drop_rate: attention dropout rate.
dropout_path_rate: drop path rate.
normalize: normalize output intermediate features in each stage.
use_checkpoint: use gradient checkpointing for reduced memory usage.
spatial_dims: number of spatial dims.
Examples::
# for 3D single channel input with size (96,96,96), 4-channel output and feature size of 48.
#>>> net = SwinUNETR(img_size=(96,96,96), in_channels=1, out_channels=4, feature_size=48)
# for 3D 4-channel input with size (128,128,128), 3-channel output and (2,4,2,2) layers in each stage.
#>>> net = SwinUNETR(img_size=(128,128,128), in_channels=4, out_channels=3, depths=(2,4,2,2))
# for 2D single channel input with size (96,96), 2-channel output and gradient checkpointing.
#>>> net = SwinUNETR(img_size=(96,96), in_channels=3, out_channels=2, use_checkpoint=True, spatial_dims=2)
"""
super().__init__()
img_size = ensure_tuple_rep(img_size, spatial_dims)
patch_size = ensure_tuple_rep(2, spatial_dims)
window_size = ensure_tuple_rep(7, spatial_dims)
if not (spatial_dims == 2 or spatial_dims == 3):
raise ValueError("spatial dimension should be 2 or 3.")
for m, p in zip(img_size, patch_size):
for i in range(5):
if m % np.power(p, i + 1) != 0:
raise ValueError("input image size (img_size) should be divisible by stage-wise image resolution.")
if not (0 <= drop_rate <= 1):
raise ValueError("dropout rate should be between 0 and 1.")
if not (0 <= attn_drop_rate <= 1):
raise ValueError("attention dropout rate should be between 0 and 1.")
if not (0 <= dropout_path_rate <= 1):
raise ValueError("drop path rate should be between 0 and 1.")
if feature_size % 12 != 0:
raise ValueError("feature_size should be divisible by 12.")
self.normalize = normalize
self.swinViT = SwinTransformer(
in_chans=in_channels,
embed_dim=feature_size,
window_size=window_size,
patch_size=patch_size,
depths=depths,
num_heads=num_heads,
mlp_ratio=4.0,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=dropout_path_rate,
norm_layer=nn.LayerNorm,
use_checkpoint=use_checkpoint,
spatial_dims=spatial_dims,
text_dim=text_dim,
)
self.encoder1 = UnetrBasicBlock(
spatial_dims=spatial_dims,
in_channels=in_channels,
out_channels=feature_size,
kernel_size=3,
stride=1,
norm_name=norm_name,
res_block=True,
)
self.encoder2 = UnetrBasicBlock(
spatial_dims=spatial_dims,
in_channels=feature_size,
out_channels=feature_size,
kernel_size=3,
stride=1,
norm_name=norm_name,
res_block=True,
)
self.encoder3 = UnetrBasicBlock(
spatial_dims=spatial_dims,
in_channels=2 * feature_size,
out_channels=2 * feature_size,
kernel_size=3,
stride=1,
norm_name=norm_name,
res_block=True,
)
self.encoder4 = UnetrBasicBlock(
spatial_dims=spatial_dims,
in_channels=4 * feature_size,
out_channels=4 * feature_size,
kernel_size=3,
stride=1,
norm_name=norm_name,
res_block=True,
)
self.encoder10 = UnetrBasicBlock(
spatial_dims=spatial_dims,
in_channels=16 * feature_size,
out_channels=16 * feature_size,
kernel_size=3,
stride=1,
norm_name=norm_name,
res_block=True,
)
self.decoder5 = UnetrUpBlock(
spatial_dims=spatial_dims,
in_channels=16 * feature_size,
out_channels=8 * feature_size,
kernel_size=3,
upsample_kernel_size=2,
norm_name=norm_name,
res_block=True,
)
self.decoder4 = UnetrUpBlock(
spatial_dims=spatial_dims,
in_channels=feature_size * 8,
out_channels=feature_size * 4,
kernel_size=3,
upsample_kernel_size=2,
norm_name=norm_name,
res_block=True,
)
self.decoder3 = UnetrUpBlock(
spatial_dims=spatial_dims,
in_channels=feature_size * 4,
out_channels=feature_size * 2,
kernel_size=3,
upsample_kernel_size=2,
norm_name=norm_name,
res_block=True,
)
self.decoder2 = UnetrUpBlock(
spatial_dims=spatial_dims,
in_channels=feature_size * 2,
out_channels=feature_size,
kernel_size=3,
upsample_kernel_size=2,
norm_name=norm_name,
res_block=True,
)
self.decoder1 = UnetrUpBlock(
spatial_dims=spatial_dims,
in_channels=feature_size,
out_channels=feature_size,
kernel_size=3,
upsample_kernel_size=2,
norm_name=norm_name,
res_block=True,
)
self.out = UnetOutBlock(
spatial_dims=spatial_dims, in_channels=feature_size, out_channels=out_channels
) # type: ignore
def load_from(self, weights):
with torch.no_grad():
self.swinViT.patch_embed.proj.weight.copy_(weights["state_dict"]["module.patch_embed.proj.weight"])
self.swinViT.patch_embed.proj.bias.copy_(weights["state_dict"]["module.patch_embed.proj.bias"])
for bname, block in self.swinViT.layers1[0].blocks.named_children():
block.load_from(weights, n_block=bname, layer="layers1")
self.swinViT.layers1[0].downsample.reduction.weight.copy_(
weights["state_dict"]["module.layers1.0.downsample.reduction.weight"]
)
self.swinViT.layers1[0].downsample.norm.weight.copy_(
weights["state_dict"]["module.layers1.0.downsample.norm.weight"]
)
self.swinViT.layers1[0].downsample.norm.bias.copy_(
weights["state_dict"]["module.layers1.0.downsample.norm.bias"]
)
for bname, block in self.swinViT.layers2[0].blocks.named_children():
block.load_from(weights, n_block=bname, layer="layers2")
self.swinViT.layers2[0].downsample.reduction.weight.copy_(
weights["state_dict"]["module.layers2.0.downsample.reduction.weight"]
)
self.swinViT.layers2[0].downsample.norm.weight.copy_(
weights["state_dict"]["module.layers2.0.downsample.norm.weight"]
)
self.swinViT.layers2[0].downsample.norm.bias.copy_(
weights["state_dict"]["module.layers2.0.downsample.norm.bias"]
)
for bname, block in self.swinViT.layers3[0].blocks.named_children():
block.load_from(weights, n_block=bname, layer="layers3")
self.swinViT.layers3[0].downsample.reduction.weight.copy_(
weights["state_dict"]["module.layers3.0.downsample.reduction.weight"]
)
self.swinViT.layers3[0].downsample.norm.weight.copy_(
weights["state_dict"]["module.layers3.0.downsample.norm.weight"]
)
self.swinViT.layers3[0].downsample.norm.bias.copy_(
weights["state_dict"]["module.layers3.0.downsample.norm.bias"]
)
for bname, block in self.swinViT.layers4[0].blocks.named_children():
block.load_from(weights, n_block=bname, layer="layers4")
self.swinViT.layers4[0].downsample.reduction.weight.copy_(
weights["state_dict"]["module.layers4.0.downsample.reduction.weight"]
)
self.swinViT.layers4[0].downsample.norm.weight.copy_(
weights["state_dict"]["module.layers4.0.downsample.norm.weight"]
)
self.swinViT.layers4[0].downsample.norm.bias.copy_(
weights["state_dict"]["module.layers4.0.downsample.norm.bias"]
)
def forward(self, x_in, text_in):
hidden_states_out = self.swinViT(x_in, text_in, self.normalize)
enc0 = self.encoder1(x_in)
enc1 = self.encoder2(hidden_states_out[0])
enc2 = self.encoder3(hidden_states_out[1])
enc3 = self.encoder4(hidden_states_out[2])
dec4 = self.encoder10(hidden_states_out[4])
dec3 = self.decoder5(dec4, hidden_states_out[3])
dec2 = self.decoder4(dec3, enc3)
dec1 = self.decoder3(dec2, enc2)
dec0 = self.decoder2(dec1, enc1)
out = self.decoder1(dec0, enc0)
logits = self.out(out)
return logits
def window_partition(x, window_size):
"""window partition operation based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
Args:
x: input tensor.
window_size: local window size.
"""
x_shape = x.size()
if len(x_shape) == 5:
b, d, h, w, c = x_shape
x = x.view(
b,
d // window_size[0],
window_size[0],
h // window_size[1],
window_size[1],
w // window_size[2],
window_size[2],
c,
)
windows = (
x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, window_size[0] * window_size[1] * window_size[2], c)
)
elif len(x_shape) == 4:
b, h, w, c = x.shape
x = x.view(b, h // window_size[0], window_size[0], w // window_size[1], window_size[1], c)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0] * window_size[1], c)
return windows
def window_reverse(windows, window_size, dims):
"""window reverse operation based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
Args:
windows: windows tensor.
window_size: local window size.
dims: dimension values.
"""
if len(dims) == 4:
b, d, h, w = dims
x = windows.view(
b,
d // window_size[0],
h // window_size[1],
w // window_size[2],
window_size[0],
window_size[1],
window_size[2],
-1,
)
x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(b, d, h, w, -1)
elif len(dims) == 3:
b, h, w = dims
x = windows.view(b, h // window_size[0], w // window_size[0], window_size[0], window_size[1], -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
return x
def get_window_size(x_size, window_size, shift_size=None):
"""Computing window size based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
Args:
x_size: input size.
window_size: local window size.
shift_size: window shifting size.
"""
use_window_size = list(window_size)
if shift_size is not None:
use_shift_size = list(shift_size)
for i in range(len(x_size)):
if x_size[i] <= window_size[i]:
use_window_size[i] = x_size[i]
if shift_size is not None:
use_shift_size[i] = 0
if shift_size is None:
return tuple(use_window_size)
else:
return tuple(use_window_size), tuple(use_shift_size)
class WindowAttention(nn.Module):
"""
Window based multi-head self attention module with relative position bias based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self,
dim: int,
num_heads: int,
window_size: Sequence[int],
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
) -> None:
"""
Args:
dim: number of feature channels.
num_heads: number of attention heads.
window_size: local window size.
qkv_bias: add a learnable bias to query, key, value.
attn_drop: attention dropout rate.
proj_drop: dropout rate of output.
"""
super().__init__()
self.dim = dim
self.window_size = window_size
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
mesh_args = torch.meshgrid.__kwdefaults__
if len(self.window_size) == 3:
self.relative_position_bias_table = nn.Parameter(
torch.zeros(
(2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1),
num_heads,
)
)
coords_d = torch.arange(self.window_size[0])
coords_h = torch.arange(self.window_size[1])
coords_w = torch.arange(self.window_size[2])
if mesh_args is not None:
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w, indexing="ij"))
else:
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 2] += self.window_size[2] - 1
relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1
elif len(self.window_size) == 2:
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
)
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
if mesh_args is not None:
coords = torch.stack(torch.meshgrid(coords_h, coords_w, indexing="ij"))
else:
coords = torch.stack(torch.meshgrid(coords_h, coords_w))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=0.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask):
b, n, c = x.shape
qkv = self.qkv(x).reshape(b, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = q @ k.transpose(-2, -1)
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index[:n, :n].reshape(-1)
].reshape(n, n, -1)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nw = mask.shape[0]
attn = attn.view(b // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, n, n)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(b, n, c)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SwinTransformerBlock(nn.Module):
"""
Swin Transformer block based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self,
dim: int,
num_heads: int,
window_size: Sequence[int],
shift_size: Sequence[int],
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
drop: float = 0.0,
attn_drop: float = 0.0,
drop_path: float = 0.0,
act_layer: str = "GELU",
norm_layer: Type[LayerNorm] = nn.LayerNorm, # type: ignore
use_checkpoint: bool = False,
) -> None:
"""
Args:
dim: number of feature channels.
num_heads: number of attention heads.
window_size: local window size.
shift_size: window shift size.
mlp_ratio: ratio of mlp hidden dim to embedding dim.
qkv_bias: add a learnable bias to query, key, value.
drop: dropout rate.
attn_drop: attention dropout rate.
drop_path: stochastic depth rate.
act_layer: activation layer.
norm_layer: normalization layer.
use_checkpoint: use gradient checkpointing for reduced memory usage.
"""
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
self.use_checkpoint = use_checkpoint
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim,
window_size=self.window_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(hidden_size=dim, mlp_dim=mlp_hidden_dim, act=act_layer, dropout_rate=drop, dropout_mode="swin")
def forward_part1(self, x, mask_matrix):
x_shape = x.size()
x = self.norm1(x)
if len(x_shape) == 5:
b, d, h, w, c = x.shape
window_size, shift_size = get_window_size((d, h, w), self.window_size, self.shift_size)
pad_l = pad_t = pad_d0 = 0
pad_d1 = (window_size[0] - d % window_size[0]) % window_size[0]
pad_b = (window_size[1] - h % window_size[1]) % window_size[1]
pad_r = (window_size[2] - w % window_size[2]) % window_size[2]
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1))
_, dp, hp, wp, _ = x.shape
dims = [b, dp, hp, wp]
elif len(x_shape) == 4:
b, h, w, c = x.shape
window_size, shift_size = get_window_size((h, w), self.window_size, self.shift_size)
pad_l = pad_t = 0
pad_r = (window_size[0] - h % window_size[0]) % window_size[0]
pad_b = (window_size[1] - w % window_size[1]) % window_size[1]
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, hp, wp, _ = x.shape
dims = [b, hp, wp]
if any(i > 0 for i in shift_size):
if len(x_shape) == 5:
shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3))
elif len(x_shape) == 4:
shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1]), dims=(1, 2))
attn_mask = mask_matrix
else:
shifted_x = x
attn_mask = None
x_windows = window_partition(shifted_x, window_size)
attn_windows = self.attn(x_windows, mask=attn_mask)
attn_windows = attn_windows.view(-1, *(window_size + (c,)))
shifted_x = window_reverse(attn_windows, window_size, dims)
if any(i > 0 for i in shift_size):
if len(x_shape) == 5:
x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3))
elif len(x_shape) == 4:
x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1]), dims=(1, 2))
else:
x = shifted_x
if len(x_shape) == 5:
if pad_d1 > 0 or pad_r > 0 or pad_b > 0:
x = x[:, :d, :h, :w, :].contiguous()
elif len(x_shape) == 4:
if pad_r > 0 or pad_b > 0:
x = x[:, :h, :w, :].contiguous()
return x
def forward_part2(self, x):
return self.drop_path(self.mlp(self.norm2(x)))
def load_from(self, weights, n_block, layer):
root = f"module.{layer}.0.blocks.{n_block}."
block_names = [
"norm1.weight",
"norm1.bias",
"attn.relative_position_bias_table",
"attn.relative_position_index",
"attn.qkv.weight",
"attn.qkv.bias",
"attn.proj.weight",
"attn.proj.bias",
"norm2.weight",
"norm2.bias",
"mlp.fc1.weight",
"mlp.fc1.bias",
"mlp.fc2.weight",
"mlp.fc2.bias",
]
with torch.no_grad():
self.norm1.weight.copy_(weights["state_dict"][root + block_names[0]])
self.norm1.bias.copy_(weights["state_dict"][root + block_names[1]])
self.attn.relative_position_bias_table.copy_(weights["state_dict"][root + block_names[2]])
self.attn.relative_position_index.copy_(weights["state_dict"][root + block_names[3]])
self.attn.qkv.weight.copy_(weights["state_dict"][root + block_names[4]])
self.attn.qkv.bias.copy_(weights["state_dict"][root + block_names[5]])
self.attn.proj.weight.copy_(weights["state_dict"][root + block_names[6]])
self.attn.proj.bias.copy_(weights["state_dict"][root + block_names[7]])
self.norm2.weight.copy_(weights["state_dict"][root + block_names[8]])
self.norm2.bias.copy_(weights["state_dict"][root + block_names[9]])
self.mlp.linear1.weight.copy_(weights["state_dict"][root + block_names[10]])
self.mlp.linear1.bias.copy_(weights["state_dict"][root + block_names[11]])
self.mlp.linear2.weight.copy_(weights["state_dict"][root + block_names[12]])
self.mlp.linear2.bias.copy_(weights["state_dict"][root + block_names[13]])
def forward(self, x, mask_matrix):
shortcut = x
if self.use_checkpoint:
x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix)
else:
x = self.forward_part1(x, mask_matrix)
x = shortcut + self.drop_path(x)
if self.use_checkpoint:
x = x + checkpoint.checkpoint(self.forward_part2, x)
else:
x = x + self.forward_part2(x)
return x
class PatchMerging(nn.Module):
"""
Patch merging layer based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self, dim: int, norm_layer: Type[LayerNorm] = nn.LayerNorm, spatial_dims: int = 3
) -> None: # type: ignore
"""
Args:
dim: number of feature channels.
norm_layer: normalization layer.
spatial_dims: number of spatial dims.
"""
super().__init__()
self.dim = dim
if spatial_dims == 3:
self.reduction = nn.Linear(8 * dim, 2 * dim, bias=False)
self.norm = norm_layer(8 * dim)
elif spatial_dims == 2:
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
x_shape = x.size()
if len(x_shape) == 5:
b, d, h, w, c = x_shape
pad_input = (h % 2 == 1) or (w % 2 == 1) or (d % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, d % 2, 0, w % 2, 0, h % 2))
x0 = x[:, 0::2, 0::2, 0::2, :]
x1 = x[:, 1::2, 0::2, 0::2, :]
x2 = x[:, 0::2, 1::2, 0::2, :]
x3 = x[:, 0::2, 0::2, 1::2, :]
x4 = x[:, 1::2, 0::2, 1::2, :]
x5 = x[:, 0::2, 1::2, 0::2, :]
x6 = x[:, 0::2, 0::2, 1::2, :]
x7 = x[:, 1::2, 1::2, 1::2, :]
x = torch.cat([x0, x1, x2, x3, x4, x5, x6, x7], -1)
elif len(x_shape) == 4:
b, h, w, c = x_shape
pad_input = (h % 2 == 1) or (w % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, w % 2, 0, h % 2))
x0 = x[:, 0::2, 0::2, :]
x1 = x[:, 1::2, 0::2, :]
x2 = x[:, 0::2, 1::2, :]
x3 = x[:, 1::2, 1::2, :]
x = torch.cat([x0, x1, x2, x3], -1)
x = self.norm(x)
x = self.reduction(x)
return x
def compute_mask(dims, window_size, shift_size, device):
"""Computing region masks based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
Args:
dims: dimension values.
window_size: local window size.
shift_size: shift size.
device: device.
"""
cnt = 0
if len(dims) == 3:
d, h, w = dims
img_mask = torch.zeros((1, d, h, w, 1), device=device)
for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0], None):
for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1], None):
for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2], None):
img_mask[:, d, h, w, :] = cnt
cnt += 1
elif len(dims) == 2:
h, w = dims
img_mask = torch.zeros((1, h, w, 1), device=device)
for h in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0], None):
for w in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1], None):
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, window_size)
mask_windows = mask_windows.squeeze(-1)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
return attn_mask
class BasicLayer(nn.Module):
"""
Basic Swin Transformer layer in one stage based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self,
dim: int,
depth: int,
num_heads: int,
window_size: Sequence[int],
drop_path: list,
mlp_ratio: float = 4.0,
qkv_bias: bool = False,
drop: float = 0.0,
attn_drop: float = 0.0,
norm_layer: Type[LayerNorm] = nn.LayerNorm, # type: ignore
downsample: isinstance = None, # type: ignore
use_checkpoint: bool = False,
) -> None:
"""
Args:
dim: number of feature channels.
depths: number of layers in each stage.
num_heads: number of attention heads.
window_size: local window size.
drop_path: stochastic depth rate.
mlp_ratio: ratio of mlp hidden dim to embedding dim.
qkv_bias: add a learnable bias to query, key, value.
drop: dropout rate.
attn_drop: attention dropout rate.
norm_layer: normalization layer.
downsample: downsample layer at the end of the layer.
use_checkpoint: use gradient checkpointing for reduced memory usage.
"""
super().__init__()
self.window_size = window_size
self.shift_size = tuple(i // 2 for i in window_size)
self.no_shift = tuple(0 for i in window_size)
self.depth = depth
self.use_checkpoint = use_checkpoint
self.blocks = nn.ModuleList(
[
SwinTransformerBlock(
dim=dim,
num_heads=num_heads,
window_size=self.window_size,
shift_size=self.no_shift if (i % 2 == 0) else self.shift_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
use_checkpoint=use_checkpoint,
)
for i in range(depth)
]
)
self.downsample = downsample
if self.downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer, spatial_dims=len(self.window_size))
def forward(self, x):
x_shape = x.size()
if len(x_shape) == 5:
b, c, d, h, w = x_shape
window_size, shift_size = get_window_size((d, h, w), self.window_size, self.shift_size)
x = rearrange(x, "b c d h w -> b d h w c")
dp = int(np.ceil(d / window_size[0])) * window_size[0]
hp = int(np.ceil(h / window_size[1])) * window_size[1]
wp = int(np.ceil(w / window_size[2])) * window_size[2]
attn_mask = compute_mask([dp, hp, wp], window_size, shift_size, x.device)
for blk in self.blocks:
x = blk(x, attn_mask)
x = x.view(b, d, h, w, -1)
if self.downsample is not None:
x = self.downsample(x)
x = rearrange(x, "b d h w c -> b c d h w")
elif len(x_shape) == 4:
b, c, h, w = x_shape
window_size, shift_size = get_window_size((h, w), self.window_size, self.shift_size)
x = rearrange(x, "b c h w -> b h w c")
hp = int(np.ceil(h / window_size[0])) * window_size[0]
wp = int(np.ceil(w / window_size[1])) * window_size[1]
attn_mask = compute_mask([hp, wp], window_size, shift_size, x.device)
for blk in self.blocks:
x = blk(x, attn_mask)
x = x.view(b, h, w, -1)
if self.downsample is not None:
x = self.downsample(x)
x = rearrange(x, "b h w c -> b c h w")
return x
class SwinTransformer(nn.Module):
"""
Swin Transformer based on: "Liu et al.,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>"
https://github.com/microsoft/Swin-Transformer
"""
def __init__(
self,
in_chans: int,
embed_dim: int,
text_dim: int,
window_size: Sequence[int],
patch_size: Sequence[int],
depths: Sequence[int],
num_heads: Sequence[int],
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_layer: Type[LayerNorm] = nn.LayerNorm, # type: ignore
patch_norm: bool = False,
use_checkpoint: bool = False,
spatial_dims: int = 3,
) -> None:
"""
Args:
in_chans: dimension of input channels.
embed_dim: number of linear projection output channels.
window_size: local window size.
patch_size: patch size.
depths: number of layers in each stage.
num_heads: number of attention heads.
mlp_ratio: ratio of mlp hidden dim to embedding dim.
qkv_bias: add a learnable bias to query, key, value.
drop_rate: dropout rate.
attn_drop_rate: attention dropout rate.
drop_path_rate: stochastic depth rate.
norm_layer: normalization layer.
patch_norm: add normalization after patch embedding.
use_checkpoint: use gradient checkpointing for reduced memory usage.
spatial_dims: spatial dimension.
"""
super().__init__()
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.patch_norm = patch_norm
self.window_size = window_size
self.patch_size = patch_size
self.patch_embed = PatchEmbed(
patch_size=self.patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None, # type: ignore
spatial_dims=spatial_dims,
)
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
self.layers1 = nn.ModuleList()
self.layers2 = nn.ModuleList()
self.layers3 = nn.ModuleList()
self.layers4 = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=int(embed_dim * 2**i_layer),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=self.window_size,
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
norm_layer=norm_layer,
downsample=PatchMerging,
use_checkpoint=use_checkpoint,
)
if i_layer == 0:
self.layers1.append(layer)
elif i_layer == 1:
self.layers2.append(layer)
elif i_layer == 2:
self.layers3.append(layer)
elif i_layer == 3:
self.layers4.append(layer)
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
self.mlp_text = nn.Sequential(
nn.Conv1d(text_dim, 1024, kernel_size=1),
nn.ReLU(),
nn.Conv1d(1024, 768, kernel_size=1),
)
self.fw_mlp = nn.Sequential(
nn.Conv3d(768, 768, kernel_size=1),
nn.ReLU())
self.mlpk = nn.Conv1d(768, 768, kernel_size=1)
self.mlpv = nn.Conv1d(768, 768, kernel_size=1)
self.ly_norm = nn.LayerNorm(normalized_shape=(4,4,4))
self.mlp_text_q = nn.Conv1d(768, 768, kernel_size=1)
self.mlp_image_k = nn.Conv1d(768, 768, kernel_size=1)
self.mlp_image_v = nn.Conv1d(768, 768, kernel_size=1)
self.mlp_image_q = nn.Conv1d(768, 768, kernel_size=1)
def proj_out(self, x, normalize=False):
if normalize:
x_shape = x.size()
if len(x_shape) == 5:
n, ch, d, h, w = x_shape
x = rearrange(x, "n c d h w -> n d h w c")
x = F.layer_norm(x, [ch])
x = rearrange(x, "n d h w c -> n c d h w")
elif len(x_shape) == 4:
n, ch, h, w = x_shape
x = rearrange(x, "n c h w -> n h w c")
x = F.layer_norm(x, [ch])
x = rearrange(x, "n h w c -> n c h w")
return x
def sequential_cross_attention(self, image_features, text_features):
"""
Cross attention between image and text features.
Args:
image_features: Tensor of shape (B, C, H, W, D)
text_features: Tensor of shape (B, T_dim, T_len)
Returns:
Processed image features with the same shape as input (B, C, H, W, D)
"""
B, C, H, W, D = image_features.shape
_, T_dim, T_len = text_features.shape
# Step 1: Text-to-Image Cross Attention (Text as Q, Image as K/V)
# Project text features to Query
text_features = self.mlp_text(text_features.permute(0,2,1).contiguous())
text_q = self.mlp_text_q(text_features).permute(0,2,1).contiguous() # Shape: (B, T_len, d_k)
# Flatten image features and project to Key and Value
image_features_flat = image_features.view(B, C, -1).contiguous() # Shape: (B, N_img, C)
image_k = self.mlp_image_k(image_features_flat).permute(0,2,1).contiguous() # Shape: (B, N_img, d_k)
image_v = self.mlp_image_v(image_features_flat).permute(0,2,1).contiguous() # Shape: (B, N_img, d_v)
# Compute attention scores and weights
attn_scores_t2i = torch.matmul(text_q, image_k.transpose(-2, -1)) / math.sqrt(
text_q.size(-1)) # (B, T_len, N_img)
attn_weights_t2i = F.softmax(attn_scores_t2i, dim=-1) # (B, T_len, N_img)
# Get attended image features
attended_image_features = torch.matmul(attn_weights_t2i, image_v).permute(0,2,1).contiguous() # (B, T_len, d_v)
# Step 2: Image-to-AttendedImage(Text) Cross Attention (Image as Q, AttendedImage as K/V)
# Project image features to Query
image_q = self.mlp_image_q(image_features_flat).permute(0,2,1).contiguous() # (B, N_img, d_k)
# Project attended text features to Key and Value
attended_image_k = self.mlpk(attended_image_features).permute(0,2,1).contiguous() # (B, T_len, d_k)
attended_image_v = self.mlpv(attended_image_features).permute(0,2,1).contiguous() # (B, T_len, d_v)
# Compute attention scores and weights
attn_scores_i2t = torch.matmul(image_q, attended_image_k.transpose(-2, -1)) / math.sqrt(
image_q.size(-1)) # (B, N_img, T_len)
attn_weights_i2t = F.softmax(attn_scores_i2t, dim=-1) # (B, N_img, T_len)
# Get attended image features
attn_output_image = torch.matmul(attn_weights_i2t, attended_image_v) # (B, N_img, d_v)
# Reshape back to original image feature shape
attn_output_image = attn_output_image.permute(0, 2, 1).contiguous() # (B, d_v, N_img)
attn_output_image = attn_output_image.view(B, C, H, W, D)
# Apply layer normalization and final MLP processing
processed_image_features = self.ly_norm(attn_output_image)
processed_image_features = self.fw_mlp(processed_image_features.float())
processed_image_features = self.ly_norm(processed_image_features)
return processed_image_features
def forward(self, x, text, normalize=True):
x0 = self.patch_embed(x)
x0 = self.pos_drop(x0)
x0_out = self.proj_out(x0, normalize)
x1 = self.layers1[0](x0.contiguous())
x1_out = self.proj_out(x1, normalize)
x2 = self.layers2[0](x1.contiguous())
x2_out = self.proj_out(x2, normalize)
x3 = self.layers3[0](x2.contiguous())
x3_out = self.proj_out(x3, normalize)
x4 = self.layers4[0](x3.contiguous())
# Sequential cross-attention fusion
x4 = self.sequential_cross_attention(x4,text)
x4_out = self.proj_out(x4, normalize)
return [x0_out, x1_out, x2_out, x3_out, x4_out]
if __name__ == "__main__":
model = TextSwinUNETR(
img_size=(128,128,128),
in_channels=4,
out_channels=3,
feature_size=48,
text_dim=768,
use_checkpoint=False,
).cuda()
input = torch.randn(1,4,128,128,128).cuda()
text = torch.randn(1,128,768).cuda()
output = model(input,text)
print(output[0].shape)
|