|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import math |
|
import os |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from monai import data, transforms |
|
from monai.data import NibabelReader |
|
from monai.transforms import MapTransform |
|
|
|
|
|
class LoadNumpyd(MapTransform): |
|
def __init__(self, keys): |
|
super().__init__(keys) |
|
|
|
def __call__(self, data): |
|
d = dict(data) |
|
for key in self.keys: |
|
d[key] = np.load(d[key]) |
|
d[key] = np.squeeze(d[key],axis=0) |
|
return d |
|
|
|
class Sampler(torch.utils.data.Sampler): |
|
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, make_even=True): |
|
if num_replicas is None: |
|
if not torch.distributed.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
num_replicas = torch.distributed.get_world_size() |
|
if rank is None: |
|
if not torch.distributed.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
rank = torch.distributed.get_rank() |
|
self.shuffle = shuffle |
|
self.make_even = make_even |
|
self.dataset = dataset |
|
self.num_replicas = num_replicas |
|
self.rank = rank |
|
self.epoch = 0 |
|
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) |
|
self.total_size = self.num_samples * self.num_replicas |
|
indices = list(range(len(self.dataset))) |
|
self.valid_length = len(indices[self.rank : self.total_size : self.num_replicas]) |
|
|
|
def __iter__(self): |
|
if self.shuffle: |
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
indices = torch.randperm(len(self.dataset), generator=g).tolist() |
|
else: |
|
indices = list(range(len(self.dataset))) |
|
if self.make_even: |
|
if len(indices) < self.total_size: |
|
if self.total_size - len(indices) < len(indices): |
|
indices += indices[: (self.total_size - len(indices))] |
|
else: |
|
extra_ids = np.random.randint(low=0, high=len(indices), size=self.total_size - len(indices)) |
|
indices += [indices[ids] for ids in extra_ids] |
|
assert len(indices) == self.total_size |
|
indices = indices[self.rank : self.total_size : self.num_replicas] |
|
self.num_samples = len(indices) |
|
return iter(indices) |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def set_epoch(self, epoch): |
|
self.epoch = epoch |
|
|
|
|
|
def datafold_read(datalist, basedir, fold=0, key="training"): |
|
with open(datalist) as f: |
|
json_data = json.load(f) |
|
|
|
json_data = json_data[key] |
|
|
|
for d in json_data: |
|
for k, v in d.items(): |
|
if isinstance(d[k], list): |
|
d[k] = [os.path.join(basedir, iv) for iv in d[k]] |
|
elif isinstance(d[k], str): |
|
d[k] = os.path.join(basedir, d[k]) if len(d[k]) > 0 else d[k] |
|
tr = [] |
|
val = [] |
|
for d in json_data: |
|
if "fold" in d and d["fold"] == fold: |
|
val.append(d) |
|
else: |
|
tr.append(d) |
|
return tr, val |
|
|
|
|
|
def get_loader(args): |
|
data_dir = args.data_dir |
|
datalist_json = args.json_list |
|
train_files, validation_files = datafold_read(datalist=datalist_json, basedir=data_dir, fold=args.fold) |
|
train_transform = transforms.Compose( |
|
[ |
|
transforms.LoadImaged(keys=["image", "label"],reader=NibabelReader()), |
|
LoadNumpyd(keys=["text_feature"]), |
|
transforms.ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), |
|
transforms.Resized(keys=["image","label"],spatial_size=[args.roi_x,args.roi_y,args.roi_z]), |
|
transforms.NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), |
|
transforms.RandScaleIntensityd(keys="image", factors=0.1, prob=1.0), |
|
transforms.RandShiftIntensityd(keys="image", offsets=0.1, prob=1.0), |
|
transforms.ToTensord(keys=["image", "label", "text_feature"]), |
|
] |
|
) |
|
val_transform = transforms.Compose( |
|
[ |
|
transforms.LoadImaged(keys=["image", "label"],reader=NibabelReader()), |
|
LoadNumpyd(keys=["text_feature"]), |
|
transforms.ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), |
|
transforms.Resized(keys=["image", "label"], spatial_size=[args.roi_x, args.roi_y, args.roi_z]), |
|
transforms.NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), |
|
transforms.ToTensord(keys=["image", "label", "text_feature"]), |
|
] |
|
) |
|
|
|
test_transform = transforms.Compose( |
|
[ |
|
transforms.LoadImaged(keys=["image", "label"],reader=NibabelReader()), |
|
LoadNumpyd(keys=["text_feature"]), |
|
transforms.ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), |
|
transforms.Resized(keys=["image", "label"], spatial_size=[args.roi_x, args.roi_y, args.roi_z]), |
|
transforms.NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), |
|
transforms.ToTensord(keys=["image", "label", "text_feature"]), |
|
] |
|
) |
|
|
|
if args.test_mode: |
|
val_ds = data.Dataset(data=validation_files, transform=test_transform) |
|
val_sampler = Sampler(val_ds, shuffle=False) if args.distributed else None |
|
test_loader = data.DataLoader( |
|
val_ds, batch_size=1, shuffle=False, num_workers=args.workers, sampler=val_sampler, pin_memory=True |
|
) |
|
|
|
loader = test_loader |
|
else: |
|
train_ds = data.Dataset(data=train_files, transform=train_transform) |
|
|
|
train_sampler = Sampler(train_ds) if args.distributed else None |
|
train_loader = data.DataLoader( |
|
train_ds, |
|
batch_size=args.batch_size, |
|
shuffle=(train_sampler is None), |
|
num_workers=args.workers, |
|
sampler=train_sampler, |
|
pin_memory=True, |
|
) |
|
val_ds = data.Dataset(data=validation_files, transform=val_transform) |
|
val_sampler = Sampler(val_ds, shuffle=False) if args.distributed else None |
|
val_loader = data.DataLoader( |
|
val_ds, batch_size=1, shuffle=False, num_workers=args.workers, sampler=val_sampler, pin_memory=True |
|
) |
|
loader = [train_loader, val_loader] |
|
|
|
return loader |
|
|