--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - KMayanja/backup_uganda model-index: - name: speaker-segmentation-fine-tuned-backup-uganda results: [] --- # speaker-segmentation-fine-tuned-backup-uganda This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the KMayanja/backup_uganda default dataset. It achieves the following results on the evaluation set: - Loss: 0.2271 - Der: 0.0667 - False Alarm: 0.0188 - Missed Detection: 0.0260 - Confusion: 0.0219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.1819 | 1.0 | 266 | 0.2174 | 0.0663 | 0.0186 | 0.0249 | 0.0228 | | 0.1659 | 2.0 | 532 | 0.2177 | 0.0669 | 0.0169 | 0.0278 | 0.0221 | | 0.1549 | 3.0 | 798 | 0.2170 | 0.0659 | 0.0181 | 0.0261 | 0.0217 | | 0.1535 | 4.0 | 1064 | 0.2222 | 0.0666 | 0.0195 | 0.0251 | 0.0220 | | 0.1541 | 5.0 | 1330 | 0.2271 | 0.0667 | 0.0188 | 0.0260 | 0.0219 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1