--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - vivos metrics: - wer model-index: - name: working results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: vivos type: vivos config: default split: None args: default metrics: - name: Wer type: wer value: 0.20034507930187803 --- # working This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset. It achieves the following results on the evaluation set: - Loss: 0.2861 - Wer: 0.2003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.8286 | 1.0274 | 300 | 3.6649 | 1.0 | | 3.3501 | 2.0548 | 600 | 2.5006 | 0.9971 | | 1.0597 | 3.0822 | 900 | 0.5530 | 0.3923 | | 0.5399 | 4.1096 | 1200 | 0.4242 | 0.3123 | | 0.4275 | 5.1370 | 1500 | 0.3533 | 0.2677 | | 0.363 | 6.1644 | 1800 | 0.3392 | 0.2368 | | 0.3145 | 7.1918 | 2100 | 0.3485 | 0.2331 | | 0.2803 | 8.2192 | 2400 | 0.3139 | 0.2136 | | 0.2551 | 9.2466 | 2700 | 0.2939 | 0.2065 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1