---
license: apache-2.0
datasets:
- open-r1/OpenR1-Math-220k
- yentinglin/s1K-1.1-trl-format
- simplescaling/s1K-1.1
language:
- en
metrics:
- accuracy
base_model:
- mistralai/Mistral-Small-24B-Instruct-2501
pipeline_tag: text-generation
tags:
- reasoning
model-index:
- name: yentinglin/Mistral-Small-24B-Instruct-2501-reasoning
results:
- task:
type: text-generation
dataset:
name: MATH-500
type: MATH
metrics:
- name: pass@1
type: pass@1
value: 0.95
verified: false
source:
name: yentinglin/zhtw-reasoning-eval-leaderboard
url: https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard
- task:
type: text-generation
dataset:
name: AIME 2025
type: AIME
metrics:
- name: pass@1
type: pass@1
value: 0.5333
verified: false
source:
name: yentinglin/zhtw-reasoning-eval-leaderboard
url: https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard
- task:
type: text-generation
dataset:
name: AIME 2024
type: AIME
metrics:
- name: pass@1
type: pass@1
value: 0.6667
verified: false
source:
name: yentinglin/zhtw-reasoning-eval-leaderboard
url: https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard
- task:
type: text-generation
dataset:
name: GPQA Diamond
type: GPQA
metrics:
- name: pass@1
type: pass@1
value: 0.62022
verified: false
source:
name: yentinglin/zhtw-reasoning-eval-leaderboard
url: https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard
---
# Mistral-Small-Reasoning
This model is a fine-tuned version of [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501), specifically optimized for mathematical reasoning tasks. It has been fine-tuned on datasets including [OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k), and [s1K-1.1](https://huggingface.co/datasets/simplescaling/s1K-1.1), aiming to enhance its reasoning capabilities.
## Model Details
### Model Description
- **Developed by:** [Yenting Lin](https://www.linkedin.com/in/yen-ting-lin-416732b3/)
- **Funded by:** [Ubitus](https://ubitus.net)
- **Model type:** Instruction-tuned language model for reasoning
- **Language(s) (NLP):** English (en)
- **License:** Apache 2.0
- **Finetuned from model:** [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501)
## How to Get Started with the Model
A demo is available at [twllm.com](https://twllm.com/models/yentinglin/mistral-sft), and inference can be run using vLLM or sglang.
## Training Details
The model was trained using **4×8 H100 GPUs**, provided by [**Ubitus**](https://ubitus.net).
[
](https://github.com/axolotl-ai-cloud/axolotl)
See Training config
axolotl version: [`a98526ef7843a3e8aa006f260e6b4fb8912b5f1a`](https://github.com/axolotl-ai-cloud/axolotl/tree/a98526ef7843a3e8aa006f260e6b4fb8912b5f1a)
```yaml
base_model: mistralai/Mistral-Small-24B-Instruct-2501
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
datasets:
- path: yentinglin/s1K-1.1-trl-format
type: chat_template
chat_template: tokenizer_default
field_messages: messages
message_field_role: role
message_field_content: content
- path: open-r1/OpenR1-Math-220k
type: chat_template
chat_template: tokenizer_default
field_messages: messages
message_field_role: from
message_field_content: value
dataset_prepared_path:
val_set_size: 0.0
output_dir: ./placeholder/
sequence_len: 32768
sample_packing: true
eval_sample_packing: False
pad_to_sequence_len: true
wandb_project: Reasoning
wandb_entity:
wandb_watch:
wandb_name: Mistral-24B-SFT-220k
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 5
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
flash_attention: true
warmup_ratio: 0.1
saves_per_epoch: 2
weight_decay: 0.0
deepspeed: deepspeed_configs/zero3_bf16.json
special_tokens:
pad_token: ""
```
## Evaluation
The evaluation code is available at [Hugging Face Open-R1](https://github.com/huggingface/open-r1). Note that I have updated the AIME 25 dataset to the full set, available at [AIME 2025](https://huggingface.co/datasets/yentinglin/aime_2025).
Our results below are averaged over multiple runs. See our eval details [here.](https://huggingface.co/datasets/yentinglin/zhtw-reasoning-details-_fsx_ubuntu_yentinglin_ckpt_run_20250214_1600_checkpoint-800_)
| Pass@1 | # Params | MATH-500 | AIME 2025 | AIME 2024 | GPQA Diamond |
|-----------------------------------|---------|---------|-----------|-----------|--------------|
| **Mistral-24B-Reasoning (Ours)** | 24B | 95.0 | 53.33 | 66.67 | 62.02 |
| Mistral-24B-Instruct | 24B | 70.6 | - | - | 45.3 |
| s1.1-32B | 32B | 93.2 | 40.0 | 56.7 | 61.62 |
| LIMO | 32B | 94.8 | 36.67 | 57.1 | 59.09 |
| DeepSeek-R1-Distill-Llama-70B | 70B | 94.5 | 46.67 | 70.0 | 65.2 |
| DeepSeek-R1-Distill-Qwen-32B | 32B | 94.3 | 60.0 | 72.6 | 62.1 |
| DeepSeek-R1 | 671B | 97.3 | 70.0 | 72.6 | 71.5 |
| o1 | - | 96.4 | 79.0 | - | 75.7 |
| o3-mini (high) | - | 97.9 | 86.5 | - | 77.2 |
| o3-mini (medium) | - | 97.3 | 76.5 | - | 74.9 |
## Citation
If you use this model, please cite:
```bib
@article{yentinglin2025_mistral_reasoning,
author = {Yenting Lin},
title = {Mistral-Small-24B-Instruct-2501-reasoning},
journal = {Hugging Face},
year = {2025},
url = {https://huggingface.co/yentinglin/Mistral-Small-24B-Instruct-2501-reasoning}
}
```