File size: 21,327 Bytes
c525794 53681dd c525794 9e03dd0 c525794 9e03dd0 c525794 9e03dd0 c525794 9e03dd0 c525794 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# coding=utf-8
# Copyright 2025 The Kwai Keye Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union, Optional
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.video_utils import VideoInput
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from .image_processing_keye_vl_1_5 import KeyeVL1_5ImageProcessor
import torch
import torch.nn as nn
import numpy as np
from itertools import chain
class KeyeVL1_5VideosProcessorKwargs(VideosKwargs, total=False):
fps: Optional[Union[List[float], float]]
# 准备reszie到的width(slow)
width: Optional[Union[List[int], int]]
# 准备reszie到的height(slow)
height: Optional[Union[List[int], int]]
# 准备resize到的width(fast)
fast_width: Optional[Union[List[int], int]]
# 准备resize到的height(fast)
fast_height: Optional[Union[List[int], int]]
# 用于标记每一帧的时间戳,数量和帧数相等
timestamps: Optional[Union[List[torch.Tensor], torch.Tensor]]
# 用于标记每一帧的类型是slow还是fast,slow=0, fast=1
frame_types: Optional[Union[List[torch.Tensor], torch.Tensor]]
class KeyeVL1_5ProcessorKwargs(ProcessingKwargs, total=False):
videos_kwargs: KeyeVL1_5VideosProcessorKwargs
_defaults = {
"text_kwargs": {
"padding": False,
},
"videos_kwargs": {"fps": 2.0},
}
def select_slow_fast_frames(frames: torch.Tensor, frame_types: torch.Tensor):
"""
Selects frames from a tensor based on a mask list.
Args:
frames (torch.Tensor): A tensor of shape (nframes, c, h, w).
frame_types (torch.Tensor): A int tensor of shape (nframes,)
Returns:
tuple[torch.Tensor, torch.Tensor]: A tuple containing two tensors:
- slow_frames: Frames which the type is 0.
- fast_frames: Frames where the type is 1.
"""
nframes, _, _, _ = frames.shape
if frame_types.shape[-1] != nframes:
raise ValueError("Length of mask must be equal to the number of frames.")
mask = (frame_types == 0)
slow_frames = frames[mask]
fast_frames = frames[~mask]
return slow_frames, fast_frames
def split_thw(tensor):
"""Split grid_thw in t dimension, the result tensor should like [[1, h, w],...]"""
repeats = tensor[:, 0]
new_thw = torch.cat([
torch.ones(tensor.shape[0], 1, dtype=tensor.dtype,
device=tensor.device),
tensor[:, 1:]
], dim=1)
return torch.repeat_interleave(new_thw, repeats, dim=0)
def merge_hws(hws):
"""
优化版本:使用更高效的方法合并张量
"""
merged = []
last_hw = [-1, -1]
for hw in hws:
# 找到连续相同形状的张量
if hw[1:] == last_hw:
merged[-1][0] += 1
else:
merged.append(hw)
last_hw = hw[1:]
return torch.tensor(merged)
class KeyeVL1_5Processor(ProcessorMixin):
r"""
[`KeyeVL1_5Processor`] offers all the functionalities of [`KeyeVL1_5ImageProcessor`] and [`Qwen2TokenizerFast`]. See the
[`~KeyeVL1_5Processor.__call__`] and [`~KeyeVL1_5Processor.decode`] for more information.
Args:
image_processor ([`KeyeVL1_5ImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`Qwen2TokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = [
"chat_template","image_std", "min_pixels", "image_mean", "merge_size", "image_processor_type",
"temporal_patch_size", "patch_size", "max_pixels"
]
image_processor_class = "AutoImageProcessor"
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
self.frame_token = "<|frame|>" if not hasattr(tokenizer, "frame_token") else tokenizer.frame_token
self.fast_video_token = "<|fast_video_pad|>" if not hasattr(tokenizer, "fast_video_token") else tokenizer.fast_video_token
self.fast_start = "<|fast_start|>" if not hasattr(tokenizer, "fast_start") else tokenizer.fast_start
self.fast_end = "<|fast_end|>" if not hasattr(tokenizer, "fast_end") else tokenizer.fast_end
super().__init__(image_processor, tokenizer, chat_template=chat_template)
self.slowfast = True
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
images: ImageInput = None,
videos: VideoInput = None,
**kwargs: Unpack[KeyeVL1_5ProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
KeyeVL1_5ImageProcessor's [`~KeyeVL1_5ImageProcessor.__call__`] if `vision_infos` is not `None`.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
"""
output_kwargs = self._merge_kwargs(
KeyeVL1_5ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
# slow_images = images
image_inputs = self.image_processor(images=images, return_tensors="pt")
image_inputs['pixel_values'] = image_inputs['pixel_values']
image_grid_thw = image_inputs["image_grid_thw"]
else:
image_inputs = {}
image_grid_thw = None
num_frames = []
if videos is not None:
batch_slow_frames = []
batch_fast_frames = []
videos_kwargs = output_kwargs["videos_kwargs"]
num_videos = len(videos)
batch_frame_types = videos_kwargs.get("frame_types", [None] * num_videos)
batch_timestamps = videos_kwargs.get("timestamps", [None] * num_videos)
batch_width = videos_kwargs.get("width", [None] * num_videos)
batch_height = videos_kwargs.get("height", [None] * num_videos)
batch_fast_width = videos_kwargs.get("fast_width", [None] * num_videos)
batch_fast_height = videos_kwargs.get("fast_height", [None] * num_videos)
for index, frames in enumerate(videos):
if isinstance(frames, np.ndarray):
frames = torch.from_numpy(frames)
nframes = frames.shape[0]
num_frames.append(nframes)
assert nframes > 0, "No frames in video"
if batch_frame_types[index] is None:
# default to all slow frames
batch_frame_types[index] = torch.zeros((nframes, ), dtype=torch.long)
frame_types = batch_frame_types[index]
slow_frames, fast_frames = select_slow_fast_frames(frames, frame_types)
has_fast_frames = fast_frames.shape[0] > 0
# resize slow frames
resized_width = batch_width[index]
resized_height = batch_height[index]
if resized_width is not None and resized_height is not None:
slow_frames = nn.functional.interpolate(
slow_frames,
[resized_height, resized_width],
mode="bilinear",
antialias=True,
).float()
do_resize = False
else:
slow_frames = slow_frames.float()
do_resize = True
# Tensor(N, C, H, W) -> Tuple[Tensor(1, C, H, W)]
# slow_frames = list(slow_frames.split(1, dim=0)),不split,在模型里面做
slow_video_inputs = self.image_processor(
images=None, videos=[slow_frames], **output_kwargs["images_kwargs"], do_resize=do_resize)
slow_video_grid_thw = slow_video_inputs["video_grid_thw"]
batch_slow_frames.append(slow_video_inputs)
# # 当前这个视频每一帧的token数
# slow_frames_patch_nums[index] = int(slow_video_inputs["pixel_values_videos"].shape[0] / \
# slow_video_grid_thw.squeeze()[0])
if has_fast_frames:
# TODO: shrink fast_frames
fast_resized_width = batch_fast_width[index]
fast_resized_height = batch_fast_height[index]
if fast_resized_width is not None and fast_resized_height is not None:
fast_frames = nn.functional.interpolate(
fast_frames,
[fast_resized_height, fast_resized_width],
mode="bilinear",
antialias=True,
).float()
do_fast_resize = False
else:
fast_frames = fast_frames.float()
do_fast_resize = True
# Tensor(N, C, H, W) -> Tuple[Tensor(1, C, H, W)]
# fast_frames = list(fast_frames.split(1, dim=0))
fast_video_inputs = self.image_processor(
images=None, videos=[fast_frames], **output_kwargs["images_kwargs"], do_resize=do_fast_resize)
fast_video_grid_thw = fast_video_inputs["video_grid_thw"]
batch_fast_frames.append(fast_video_inputs)
# # 当前这个视频的所有token数
# fast_frames_token_nums[index] = int(fast_video_inputs["pixel_values_videos"].shape[0] / \
# fast_video_grid_thw.squeeze()[0])
assert len(batch_slow_frames) > 0, "Slow frames should not be empty."
slow_pixel_values_videos_list = [
video["pixel_values_videos"] for video in batch_slow_frames if video is not None]
slow_video_grid_thw_list = [
video["video_grid_thw"] for video in batch_slow_frames if video is not None]
slow_pixel_values_videos = torch.concat(slow_pixel_values_videos_list, dim=0)
slow_video_grid_thw = torch.concat(slow_video_grid_thw_list, dim=0)
if has_fast_frames:
fast_pixel_values_videos_list = [
video["pixel_values_videos"] for video in batch_fast_frames \
if video is not None]
fast_video_grid_thw_list = [
video["video_grid_thw"] for video in batch_fast_frames \
if video is not None]
fast_pixel_values_videos = \
torch.concat(fast_pixel_values_videos_list, dim=0)
fast_video_grid_thw = \
torch.concat(fast_video_grid_thw_list, dim=0)
else:
fast_video_grid_thw = None
else:
slow_video_grid_thw = None
fast_video_grid_thw = None
if not isinstance(text, list):
text = [text]
if image_grid_thw is not None:
index = 0
for i in range(len(text)):
while self.image_token in text[i]:
image_place_holder_tempale = "<|placeholder|>" * (
image_grid_thw[index].prod() // self.image_processor.merge_size ** 2)
text[i] = text[i].replace(
self.image_token,
image_place_holder_tempale,
1,
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.image_token)
pixel_values_videos = []
video_grid_thw = []
videos_inputs = {}
if slow_video_grid_thw is not None:
slow_video_grid_thw = split_thw(slow_video_grid_thw)
if fast_video_grid_thw is not None:
fast_video_grid_thw = split_thw(fast_video_grid_thw)
index = 0
slow_index = 0
fast_index = 0
slow_pixels_index = 0
fast_pixels_index = 0
for i in range(len(text)):
while self.video_token in text[i]:
video_place_holder_tempale = ""
for j in range(batch_frame_types[index].shape[-1]):
if batch_timestamps[index] is not None: # 如果有时间戳
video_place_holder_tempale += self.frame_token + format(batch_timestamps[index][j], ".1f")
else:
video_place_holder_tempale += self.frame_token
# 当前帧是slow
if batch_frame_types[index][j] == 0:
num_patches = int(slow_video_grid_thw[slow_index].prod())
video_place_holder_tempale += "<|placeholder|>" * (
num_patches // self.image_processor.merge_size ** 2)
pixel_values_videos.append(
slow_pixel_values_videos[slow_pixels_index:slow_pixels_index + num_patches])
slow_pixels_index = slow_pixels_index + num_patches
video_grid_thw.append(slow_video_grid_thw[slow_index].tolist())
slow_index += 1
# 当前帧是fast
elif batch_frame_types[index][j] == 1:
num_patches = int(fast_video_grid_thw[fast_index].prod())
video_place_holder_tempale += self.fast_start + "<|placeholder|>" * (
num_patches // self.image_processor.merge_size ** 2) + \
self.fast_end
pixel_values_videos.append(
fast_pixel_values_videos[fast_pixels_index:fast_pixels_index + num_patches])
fast_pixels_index = fast_pixels_index + num_patches
video_grid_thw.append(fast_video_grid_thw[fast_index].tolist())
fast_index += 1
text[i] = text[i].replace(
self.video_token,
video_place_holder_tempale,
1,
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.video_token)
videos_inputs["pixel_values_videos"] = torch.cat(pixel_values_videos, dim=0)
videos_inputs["video_grid_thw"] = merge_hws(video_grid_thw)
videos_inputs["num_frames"] = torch.tensor(num_frames)
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_image_text_to_text(
self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
skip_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
Clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
**kwargs:
Additional arguments to be passed to the tokenizer's `batch_decode method`.
Returns:
`List[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
return names_from_processor
__all__ = ["KeyeVL1_5Processor"]
|