File size: 21,327 Bytes
c525794
53681dd
c525794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e03dd0
 
 
 
c525794
 
 
9e03dd0
c525794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e03dd0
 
 
 
c525794
 
 
9e03dd0
c525794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# coding=utf-8
# Copyright 2025 The Kwai Keye Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union, Optional

from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.video_utils import VideoInput
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from .image_processing_keye_vl_1_5 import KeyeVL1_5ImageProcessor
import torch
import torch.nn as nn
import numpy as np
from itertools import chain

class KeyeVL1_5VideosProcessorKwargs(VideosKwargs, total=False):
    fps: Optional[Union[List[float], float]]
    # 准备reszie到的width(slow)
    width: Optional[Union[List[int], int]]
    # 准备reszie到的height(slow)
    height: Optional[Union[List[int], int]]
    # 准备resize到的width(fast)
    fast_width: Optional[Union[List[int], int]]
    # 准备resize到的height(fast)
    fast_height: Optional[Union[List[int], int]]
    # 用于标记每一帧的时间戳,数量和帧数相等
    timestamps: Optional[Union[List[torch.Tensor], torch.Tensor]]
    # 用于标记每一帧的类型是slow还是fast,slow=0, fast=1
    frame_types: Optional[Union[List[torch.Tensor], torch.Tensor]]


class KeyeVL1_5ProcessorKwargs(ProcessingKwargs, total=False):
    videos_kwargs: KeyeVL1_5VideosProcessorKwargs
    _defaults = {
        "text_kwargs": {
            "padding": False,
        },
        "videos_kwargs": {"fps": 2.0},
    }

def select_slow_fast_frames(frames: torch.Tensor, frame_types: torch.Tensor):
    """
    Selects frames from a tensor based on a mask list.

    Args:
        frames (torch.Tensor): A tensor of shape (nframes, c, h, w).
        frame_types (torch.Tensor): A int tensor of shape (nframes,)

    Returns:
        tuple[torch.Tensor, torch.Tensor]: A tuple containing two tensors:
            - slow_frames: Frames which the type is 0.
            - fast_frames: Frames where the type is 1.
    """
    nframes, _, _, _ = frames.shape
    if frame_types.shape[-1] != nframes:
        raise ValueError("Length of mask must be equal to the number of frames.")

    mask = (frame_types == 0)

    slow_frames = frames[mask]
    fast_frames = frames[~mask]

    return slow_frames, fast_frames

def split_thw(tensor):
    """Split grid_thw in t dimension, the result tensor should like [[1, h, w],...]"""
    repeats = tensor[:, 0]
    new_thw = torch.cat([
        torch.ones(tensor.shape[0], 1, dtype=tensor.dtype,
            device=tensor.device),
        tensor[:, 1:]
    ], dim=1)
    return torch.repeat_interleave(new_thw, repeats, dim=0)

def merge_hws(hws):
    """
    优化版本:使用更高效的方法合并张量
    """
    merged = []
    last_hw = [-1, -1]
    
    for hw in hws:
        # 找到连续相同形状的张量
        if hw[1:] == last_hw:
            merged[-1][0] += 1
        else:
            merged.append(hw)
            last_hw = hw[1:]
    
    return torch.tensor(merged)

class KeyeVL1_5Processor(ProcessorMixin):
    r"""
    [`KeyeVL1_5Processor`] offers all the functionalities of [`KeyeVL1_5ImageProcessor`] and [`Qwen2TokenizerFast`]. See the
    [`~KeyeVL1_5Processor.__call__`] and [`~KeyeVL1_5Processor.decode`] for more information.
    Args:
        image_processor ([`KeyeVL1_5ImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`Qwen2TokenizerFast`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    """

    attributes = ["image_processor", "tokenizer"]
    valid_kwargs = [
        "chat_template","image_std", "min_pixels", "image_mean", "merge_size", "image_processor_type",
        "temporal_patch_size", "patch_size", "max_pixels"
    ]

    image_processor_class = "AutoImageProcessor"
    tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")

    def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
        self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
        self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
        self.frame_token = "<|frame|>" if not hasattr(tokenizer, "frame_token") else tokenizer.frame_token
        self.fast_video_token = "<|fast_video_pad|>" if not hasattr(tokenizer, "fast_video_token") else tokenizer.fast_video_token
        self.fast_start = "<|fast_start|>" if not hasattr(tokenizer, "fast_start") else tokenizer.fast_start
        self.fast_end = "<|fast_end|>" if not hasattr(tokenizer, "fast_end") else tokenizer.fast_end
        super().__init__(image_processor, tokenizer, chat_template=chat_template)

        self.slowfast = True

    def __call__(
        self,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        images: ImageInput = None,
        videos: VideoInput = None,
        **kwargs: Unpack[KeyeVL1_5ProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
        KeyeVL1_5ImageProcessor's [`~KeyeVL1_5ImageProcessor.__call__`] if `vision_infos` is not `None`.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
                tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
            - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
            - **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
            - **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
        """
        output_kwargs = self._merge_kwargs(
            KeyeVL1_5ProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )

        if images is not None:
            # slow_images = images
            image_inputs = self.image_processor(images=images, return_tensors="pt")
            image_inputs['pixel_values'] = image_inputs['pixel_values']
            image_grid_thw = image_inputs["image_grid_thw"]
        else:
            image_inputs = {}
            image_grid_thw = None

        num_frames = []
        if videos is not None:
            batch_slow_frames = []
            batch_fast_frames = []

            videos_kwargs = output_kwargs["videos_kwargs"]
            num_videos = len(videos)
            batch_frame_types = videos_kwargs.get("frame_types", [None] * num_videos)
            batch_timestamps = videos_kwargs.get("timestamps", [None] * num_videos)
            batch_width = videos_kwargs.get("width", [None] * num_videos)
            batch_height = videos_kwargs.get("height", [None] * num_videos)
            batch_fast_width = videos_kwargs.get("fast_width", [None] * num_videos)
            batch_fast_height = videos_kwargs.get("fast_height", [None] * num_videos)

            for index, frames in enumerate(videos):
                if isinstance(frames, np.ndarray):
                    frames = torch.from_numpy(frames)
                nframes = frames.shape[0]
                num_frames.append(nframes)
                assert nframes > 0, "No frames in video"
                if batch_frame_types[index] is None:
                    # default to all slow frames
                    batch_frame_types[index] = torch.zeros((nframes, ), dtype=torch.long)
                frame_types = batch_frame_types[index]
                slow_frames, fast_frames = select_slow_fast_frames(frames, frame_types)
                has_fast_frames = fast_frames.shape[0] > 0
                # resize slow frames
                resized_width = batch_width[index]
                resized_height = batch_height[index]
                if resized_width is not None and resized_height is not None:
                    slow_frames = nn.functional.interpolate(
                        slow_frames,
                        [resized_height, resized_width],
                        mode="bilinear",
                        antialias=True,
                    ).float()
                    do_resize = False
                else:
                    slow_frames = slow_frames.float()
                    do_resize = True
                # Tensor(N, C, H, W) -> Tuple[Tensor(1, C, H, W)]
                # slow_frames = list(slow_frames.split(1, dim=0)),不split,在模型里面做
                slow_video_inputs = self.image_processor(
                    images=None, videos=[slow_frames], **output_kwargs["images_kwargs"], do_resize=do_resize)
                slow_video_grid_thw = slow_video_inputs["video_grid_thw"]
                batch_slow_frames.append(slow_video_inputs)
                # # 当前这个视频每一帧的token数
                # slow_frames_patch_nums[index] = int(slow_video_inputs["pixel_values_videos"].shape[0] / \
                #     slow_video_grid_thw.squeeze()[0])

                if has_fast_frames:
                    # TODO: shrink fast_frames
                    fast_resized_width = batch_fast_width[index]
                    fast_resized_height = batch_fast_height[index]
                    if fast_resized_width is not None and fast_resized_height is not None:
                        fast_frames = nn.functional.interpolate(
                            fast_frames,
                            [fast_resized_height, fast_resized_width],
                            mode="bilinear",
                            antialias=True,
                        ).float()
                        do_fast_resize = False
                    else:
                        fast_frames = fast_frames.float()
                        do_fast_resize = True
                    # Tensor(N, C, H, W) -> Tuple[Tensor(1, C, H, W)]
                    # fast_frames = list(fast_frames.split(1, dim=0))
                    fast_video_inputs = self.image_processor(
                        images=None, videos=[fast_frames], **output_kwargs["images_kwargs"], do_resize=do_fast_resize)
                    fast_video_grid_thw = fast_video_inputs["video_grid_thw"]
                    batch_fast_frames.append(fast_video_inputs)
                    # # 当前这个视频的所有token数
                    # fast_frames_token_nums[index] = int(fast_video_inputs["pixel_values_videos"].shape[0] / \
                    #     fast_video_grid_thw.squeeze()[0])

            assert len(batch_slow_frames) > 0, "Slow frames should not be empty."
            slow_pixel_values_videos_list = [
                video["pixel_values_videos"] for video in batch_slow_frames if video is not None]
            slow_video_grid_thw_list = [
                video["video_grid_thw"] for video in batch_slow_frames if video is not None]

            slow_pixel_values_videos = torch.concat(slow_pixel_values_videos_list, dim=0)
            slow_video_grid_thw = torch.concat(slow_video_grid_thw_list, dim=0)

            if has_fast_frames:
                fast_pixel_values_videos_list = [
                    video["pixel_values_videos"] for video in batch_fast_frames \
                        if video is not None]
                fast_video_grid_thw_list = [
                    video["video_grid_thw"] for video in batch_fast_frames \
                        if video is not None]

                fast_pixel_values_videos = \
                    torch.concat(fast_pixel_values_videos_list, dim=0)
                fast_video_grid_thw = \
                    torch.concat(fast_video_grid_thw_list, dim=0)
            else:
                fast_video_grid_thw = None
        else:
            slow_video_grid_thw = None
            fast_video_grid_thw = None

        if not isinstance(text, list):
            text = [text]
        if image_grid_thw is not None:
            index = 0
            for i in range(len(text)):
                while self.image_token in text[i]:
                    image_place_holder_tempale = "<|placeholder|>" * (
                        image_grid_thw[index].prod() // self.image_processor.merge_size ** 2)
                    text[i] = text[i].replace(
                        self.image_token,
                        image_place_holder_tempale,
                        1,
                    )
                    index += 1
                text[i] = text[i].replace("<|placeholder|>", self.image_token)

        pixel_values_videos = []
        video_grid_thw = []
        videos_inputs = {}
        if slow_video_grid_thw is not None:
            slow_video_grid_thw = split_thw(slow_video_grid_thw)
            if fast_video_grid_thw is not None:
                fast_video_grid_thw = split_thw(fast_video_grid_thw)
            index = 0
            slow_index = 0
            fast_index = 0
            slow_pixels_index = 0
            fast_pixels_index = 0
            for i in range(len(text)):
                while self.video_token in text[i]:
                    video_place_holder_tempale = ""

                    for j in range(batch_frame_types[index].shape[-1]):
                        if batch_timestamps[index] is not None: # 如果有时间戳
                            video_place_holder_tempale += self.frame_token + format(batch_timestamps[index][j], ".1f")
                        else:
                            video_place_holder_tempale += self.frame_token

                        # 当前帧是slow
                        if batch_frame_types[index][j] == 0:
                            num_patches = int(slow_video_grid_thw[slow_index].prod())
                            video_place_holder_tempale += "<|placeholder|>" * (
                                num_patches // self.image_processor.merge_size ** 2)
                            pixel_values_videos.append(
                                slow_pixel_values_videos[slow_pixels_index:slow_pixels_index + num_patches])
                            slow_pixels_index = slow_pixels_index + num_patches
                            video_grid_thw.append(slow_video_grid_thw[slow_index].tolist())
                            slow_index += 1

                        # 当前帧是fast
                        elif batch_frame_types[index][j] == 1:
                            num_patches = int(fast_video_grid_thw[fast_index].prod()) 
                            video_place_holder_tempale += self.fast_start + "<|placeholder|>" * (
                                num_patches // self.image_processor.merge_size ** 2) + \
                                self.fast_end
                            pixel_values_videos.append(
                                fast_pixel_values_videos[fast_pixels_index:fast_pixels_index + num_patches])
                            fast_pixels_index = fast_pixels_index + num_patches
                            video_grid_thw.append(fast_video_grid_thw[fast_index].tolist())
                            fast_index += 1
                    text[i] = text[i].replace(
                        self.video_token,
                        video_place_holder_tempale,
                        1,
                    )
                    index += 1
                text[i] = text[i].replace("<|placeholder|>", self.video_token)

            videos_inputs["pixel_values_videos"] = torch.cat(pixel_values_videos, dim=0)
            videos_inputs["video_grid_thw"] = merge_hws(video_grid_thw)
            videos_inputs["num_frames"] = torch.tensor(num_frames)

        text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])

        return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    def post_process_image_text_to_text(
        self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
    ):
        """
        Post-process the output of the model to decode the text.

        Args:
            generated_outputs (`torch.Tensor` or `np.ndarray`):
                The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
                or `(sequence_length,)`.
            skip_special_tokens (`bool`, *optional*, defaults to `True`):
                Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
            Clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
                Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
            **kwargs:
                Additional arguments to be passed to the tokenizer's `batch_decode method`.

        Returns:
            `List[str]`: The decoded text.
        """
        return self.tokenizer.batch_decode(
            generated_outputs,
            skip_special_tokens=skip_special_tokens,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            **kwargs,
        )

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
        return names_from_processor



__all__ = ["KeyeVL1_5Processor"]