LamaDiab commited on
Commit
3df58ff
·
verified ·
1 Parent(s): 96fddbe

Training in progress, epoch 3, checkpoint

Browse files
checkpoint-11800/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-11800/README.md ADDED
@@ -0,0 +1,424 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:1006385
9
+ - loss:MultipleNegativesSymmetricRankingLoss
10
+ base_model: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
11
+ widget:
12
+ - source_sentence: essence multi task concealer 15 natural nude
13
+ sentences:
14
+ - tarte 4 in 1 mini mascara
15
+ - essence
16
+ - face make-up
17
+ - source_sentence: granville original one bite original rice crispy squares
18
+ sentences:
19
+ - rice crispy sweetened
20
+ - sweet
21
+ - roasted hazelnut syrup
22
+ - source_sentence: sand eel shad soft lure combo eelo 150 25 g ayu/blue
23
+ sentences:
24
+ - fishing
25
+ - fast fishing fishing lure
26
+ - black marble plant pot
27
+ - source_sentence: apple cinnamon greek yoghurt
28
+ sentences:
29
+ - dairy
30
+ - gluten free yogurt
31
+ - 1 kg coffee frappe base
32
+ - source_sentence: golden olive pouch
33
+ sentences:
34
+ - trio kaftan
35
+ - pouch
36
+ - bag
37
+ pipeline_tag: sentence-similarity
38
+ library_name: sentence-transformers
39
+ metrics:
40
+ - cosine_accuracy
41
+ model-index:
42
+ - name: SentenceTransformer based on sentence-transformers/multi-qa-MiniLM-L6-cos-v1
43
+ results:
44
+ - task:
45
+ type: triplet
46
+ name: Triplet
47
+ dataset:
48
+ name: Unknown
49
+ type: unknown
50
+ metrics:
51
+ - type: cosine_accuracy
52
+ value: 0.9703438878059387
53
+ name: Cosine Accuracy
54
+ ---
55
+
56
+ # SentenceTransformer based on sentence-transformers/multi-qa-MiniLM-L6-cos-v1
57
+
58
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
59
+
60
+ ## Model Details
61
+
62
+ ### Model Description
63
+ - **Model Type:** Sentence Transformer
64
+ - **Base model:** [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1) <!-- at revision b207367332321f8e44f96e224ef15bc607f4dbf0 -->
65
+ - **Maximum Sequence Length:** 512 tokens
66
+ - **Output Dimensionality:** 384 dimensions
67
+ - **Similarity Function:** Cosine Similarity
68
+ <!-- - **Training Dataset:** Unknown -->
69
+ <!-- - **Language:** Unknown -->
70
+ <!-- - **License:** Unknown -->
71
+
72
+ ### Model Sources
73
+
74
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
75
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
76
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
77
+
78
+ ### Full Model Architecture
79
+
80
+ ```
81
+ SentenceTransformer(
82
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
83
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
84
+ (2): Normalize()
85
+ )
86
+ ```
87
+
88
+ ## Usage
89
+
90
+ ### Direct Usage (Sentence Transformers)
91
+
92
+ First install the Sentence Transformers library:
93
+
94
+ ```bash
95
+ pip install -U sentence-transformers
96
+ ```
97
+
98
+ Then you can load this model and run inference.
99
+ ```python
100
+ from sentence_transformers import SentenceTransformer
101
+
102
+ # Download from the 🤗 Hub
103
+ model = SentenceTransformer("LamaDiab/MultiMiniLM-V25Data-256BATCH-SemanticEngine")
104
+ # Run inference
105
+ sentences = [
106
+ 'golden olive pouch',
107
+ 'pouch',
108
+ 'trio kaftan',
109
+ ]
110
+ embeddings = model.encode(sentences)
111
+ print(embeddings.shape)
112
+ # [3, 384]
113
+
114
+ # Get the similarity scores for the embeddings
115
+ similarities = model.similarity(embeddings, embeddings)
116
+ print(similarities)
117
+ # tensor([[1.0000, 0.8017, 0.1199],
118
+ # [0.8017, 1.0000, 0.0611],
119
+ # [0.1199, 0.0611, 1.0000]])
120
+ ```
121
+
122
+ <!--
123
+ ### Direct Usage (Transformers)
124
+
125
+ <details><summary>Click to see the direct usage in Transformers</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Downstream Usage (Sentence Transformers)
132
+
133
+ You can finetune this model on your own dataset.
134
+
135
+ <details><summary>Click to expand</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Out-of-Scope Use
142
+
143
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
144
+ -->
145
+
146
+ ## Evaluation
147
+
148
+ ### Metrics
149
+
150
+ #### Triplet
151
+
152
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
153
+
154
+ | Metric | Value |
155
+ |:--------------------|:-----------|
156
+ | **cosine_accuracy** | **0.9703** |
157
+
158
+ <!--
159
+ ## Bias, Risks and Limitations
160
+
161
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
162
+ -->
163
+
164
+ <!--
165
+ ### Recommendations
166
+
167
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
168
+ -->
169
+
170
+ ## Training Details
171
+
172
+ ### Training Dataset
173
+
174
+ #### Unnamed Dataset
175
+
176
+ * Size: 1,006,385 training samples
177
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>itemCategory</code>
178
+ * Approximate statistics based on the first 1000 samples:
179
+ | | anchor | positive | itemCategory |
180
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
181
+ | type | string | string | string |
182
+ | details | <ul><li>min: 3 tokens</li><li>mean: 11.94 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.57 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.91 tokens</li><li>max: 9 tokens</li></ul> |
183
+ * Samples:
184
+ | anchor | positive | itemCategory |
185
+ |:-------------------------------------------------------------------------------------------------|:---------------------------------|:------------------------|
186
+ | <code>lice repellent serum</code> | <code>hair serum</code> | <code>hair serum</code> |
187
+ | <code>vanilla sponge cake with fresh moisturizer and strawberry pieces.<br>serve person.</code> | <code>vanilla tres leches</code> | <code>sweet</code> |
188
+ | <code>wyl chips - kettle cooked sea salt & balsamic vinegar potato chips - gr</code> | <code>snacks</code> | <code>snacks</code> |
189
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
190
+ ```json
191
+ {
192
+ "scale": 20.0,
193
+ "similarity_fct": "cos_sim",
194
+ "gather_across_devices": false
195
+ }
196
+ ```
197
+
198
+ ### Evaluation Dataset
199
+
200
+ #### Unnamed Dataset
201
+
202
+ * Size: 9,509 evaluation samples
203
+ * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, and <code>itemCategory</code>
204
+ * Approximate statistics based on the first 1000 samples:
205
+ | | anchor | positive | negative | itemCategory |
206
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
207
+ | type | string | string | string | string |
208
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.63 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.3 tokens</li><li>max: 150 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.5 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.88 tokens</li><li>max: 10 tokens</li></ul> |
209
+ * Samples:
210
+ | anchor | positive | negative | itemCategory |
211
+ |:---------------------------------------------------------------------|:-----------------------------------------|:-------------------------------------------------------------------|:------------------------------------|
212
+ | <code>pilot mechanical pencil progrex h-127 - 0.7 mm</code> | <code> pilot pencil </code> | <code>lunch bag colors 22 × 16 × 28 cm must shark 000586181</code> | <code>pencil</code> |
213
+ | <code>superior drawing marker -pen - set of 12 colors - 2 nib</code> | <code> marker pen </code> | <code>staedtler triplus fineliner 10 + 3 pack</code> | <code>marker</code> |
214
+ | <code>first person singular author: haruki murakami</code> | <code> first person singular book</code> | <code>misty grater stainless steel</code> | <code>literature and fiction</code> |
215
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
216
+ ```json
217
+ {
218
+ "scale": 20.0,
219
+ "similarity_fct": "cos_sim",
220
+ "gather_across_devices": false
221
+ }
222
+ ```
223
+
224
+ ### Training Hyperparameters
225
+ #### Non-Default Hyperparameters
226
+
227
+ - `eval_strategy`: steps
228
+ - `per_device_train_batch_size`: 256
229
+ - `per_device_eval_batch_size`: 256
230
+ - `learning_rate`: 3e-05
231
+ - `weight_decay`: 0.001
232
+ - `num_train_epochs`: 5
233
+ - `warmup_ratio`: 0.1
234
+ - `fp16`: True
235
+ - `dataloader_num_workers`: 1
236
+ - `dataloader_prefetch_factor`: 2
237
+ - `dataloader_persistent_workers`: True
238
+ - `push_to_hub`: True
239
+ - `hub_model_id`: LamaDiab/MultiMiniLM-V25Data-256BATCH-SemanticEngine
240
+ - `hub_strategy`: all_checkpoints
241
+
242
+ #### All Hyperparameters
243
+ <details><summary>Click to expand</summary>
244
+
245
+ - `overwrite_output_dir`: False
246
+ - `do_predict`: False
247
+ - `eval_strategy`: steps
248
+ - `prediction_loss_only`: True
249
+ - `per_device_train_batch_size`: 256
250
+ - `per_device_eval_batch_size`: 256
251
+ - `per_gpu_train_batch_size`: None
252
+ - `per_gpu_eval_batch_size`: None
253
+ - `gradient_accumulation_steps`: 1
254
+ - `eval_accumulation_steps`: None
255
+ - `torch_empty_cache_steps`: None
256
+ - `learning_rate`: 3e-05
257
+ - `weight_decay`: 0.001
258
+ - `adam_beta1`: 0.9
259
+ - `adam_beta2`: 0.999
260
+ - `adam_epsilon`: 1e-08
261
+ - `max_grad_norm`: 1.0
262
+ - `num_train_epochs`: 5
263
+ - `max_steps`: -1
264
+ - `lr_scheduler_type`: linear
265
+ - `lr_scheduler_kwargs`: {}
266
+ - `warmup_ratio`: 0.1
267
+ - `warmup_steps`: 0
268
+ - `log_level`: passive
269
+ - `log_level_replica`: warning
270
+ - `log_on_each_node`: True
271
+ - `logging_nan_inf_filter`: True
272
+ - `save_safetensors`: True
273
+ - `save_on_each_node`: False
274
+ - `save_only_model`: False
275
+ - `restore_callback_states_from_checkpoint`: False
276
+ - `no_cuda`: False
277
+ - `use_cpu`: False
278
+ - `use_mps_device`: False
279
+ - `seed`: 42
280
+ - `data_seed`: None
281
+ - `jit_mode_eval`: False
282
+ - `use_ipex`: False
283
+ - `bf16`: False
284
+ - `fp16`: True
285
+ - `fp16_opt_level`: O1
286
+ - `half_precision_backend`: auto
287
+ - `bf16_full_eval`: False
288
+ - `fp16_full_eval`: False
289
+ - `tf32`: None
290
+ - `local_rank`: 0
291
+ - `ddp_backend`: None
292
+ - `tpu_num_cores`: None
293
+ - `tpu_metrics_debug`: False
294
+ - `debug`: []
295
+ - `dataloader_drop_last`: False
296
+ - `dataloader_num_workers`: 1
297
+ - `dataloader_prefetch_factor`: 2
298
+ - `past_index`: -1
299
+ - `disable_tqdm`: False
300
+ - `remove_unused_columns`: True
301
+ - `label_names`: None
302
+ - `load_best_model_at_end`: False
303
+ - `ignore_data_skip`: False
304
+ - `fsdp`: []
305
+ - `fsdp_min_num_params`: 0
306
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
307
+ - `fsdp_transformer_layer_cls_to_wrap`: None
308
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
309
+ - `deepspeed`: None
310
+ - `label_smoothing_factor`: 0.0
311
+ - `optim`: adamw_torch
312
+ - `optim_args`: None
313
+ - `adafactor`: False
314
+ - `group_by_length`: False
315
+ - `length_column_name`: length
316
+ - `ddp_find_unused_parameters`: None
317
+ - `ddp_bucket_cap_mb`: None
318
+ - `ddp_broadcast_buffers`: False
319
+ - `dataloader_pin_memory`: True
320
+ - `dataloader_persistent_workers`: True
321
+ - `skip_memory_metrics`: True
322
+ - `use_legacy_prediction_loop`: False
323
+ - `push_to_hub`: True
324
+ - `resume_from_checkpoint`: None
325
+ - `hub_model_id`: LamaDiab/MultiMiniLM-V25Data-256BATCH-SemanticEngine
326
+ - `hub_strategy`: all_checkpoints
327
+ - `hub_private_repo`: None
328
+ - `hub_always_push`: False
329
+ - `hub_revision`: None
330
+ - `gradient_checkpointing`: False
331
+ - `gradient_checkpointing_kwargs`: None
332
+ - `include_inputs_for_metrics`: False
333
+ - `include_for_metrics`: []
334
+ - `eval_do_concat_batches`: True
335
+ - `fp16_backend`: auto
336
+ - `push_to_hub_model_id`: None
337
+ - `push_to_hub_organization`: None
338
+ - `mp_parameters`:
339
+ - `auto_find_batch_size`: False
340
+ - `full_determinism`: False
341
+ - `torchdynamo`: None
342
+ - `ray_scope`: last
343
+ - `ddp_timeout`: 1800
344
+ - `torch_compile`: False
345
+ - `torch_compile_backend`: None
346
+ - `torch_compile_mode`: None
347
+ - `include_tokens_per_second`: False
348
+ - `include_num_input_tokens_seen`: False
349
+ - `neftune_noise_alpha`: None
350
+ - `optim_target_modules`: None
351
+ - `batch_eval_metrics`: False
352
+ - `eval_on_start`: False
353
+ - `use_liger_kernel`: False
354
+ - `liger_kernel_config`: None
355
+ - `eval_use_gather_object`: False
356
+ - `average_tokens_across_devices`: False
357
+ - `prompts`: None
358
+ - `batch_sampler`: batch_sampler
359
+ - `multi_dataset_batch_sampler`: proportional
360
+ - `router_mapping`: {}
361
+ - `learning_rate_mapping`: {}
362
+
363
+ </details>
364
+
365
+ ### Training Logs
366
+ | Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
367
+ |:------:|:-----:|:-------------:|:---------------:|:---------------:|
368
+ | 0.0003 | 1 | 3.7722 | - | - |
369
+ | 0.2543 | 1000 | 2.8712 | 0.5578 | 0.9445 |
370
+ | 0.5086 | 2000 | 1.8052 | 0.5062 | 0.9498 |
371
+ | 0.7630 | 3000 | 1.2908 | 0.4583 | 0.9575 |
372
+ | 1.0173 | 4000 | 1.0201 | 0.4365 | 0.9621 |
373
+ | 1.2715 | 5000 | 1.2224 | 0.4258 | 0.9627 |
374
+ | 1.5257 | 6000 | 1.1341 | 0.4155 | 0.9645 |
375
+ | 1.7799 | 7000 | 1.0798 | 0.4215 | 0.9657 |
376
+ | 2.0341 | 8000 | 1.0249 | 0.4113 | 0.9681 |
377
+ | 2.2883 | 9000 | 0.9443 | 0.4053 | 0.9673 |
378
+ | 2.5425 | 10000 | 0.9178 | 0.3976 | 0.9688 |
379
+ | 2.7966 | 11000 | 0.8991 | 0.4033 | 0.9703 |
380
+
381
+
382
+ ### Framework Versions
383
+ - Python: 3.11.13
384
+ - Sentence Transformers: 5.1.2
385
+ - Transformers: 4.53.3
386
+ - PyTorch: 2.6.0+cu124
387
+ - Accelerate: 1.9.0
388
+ - Datasets: 4.4.1
389
+ - Tokenizers: 0.21.2
390
+
391
+ ## Citation
392
+
393
+ ### BibTeX
394
+
395
+ #### Sentence Transformers
396
+ ```bibtex
397
+ @inproceedings{reimers-2019-sentence-bert,
398
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
399
+ author = "Reimers, Nils and Gurevych, Iryna",
400
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
401
+ month = "11",
402
+ year = "2019",
403
+ publisher = "Association for Computational Linguistics",
404
+ url = "https://arxiv.org/abs/1908.10084",
405
+ }
406
+ ```
407
+
408
+ <!--
409
+ ## Glossary
410
+
411
+ *Clearly define terms in order to be accessible across audiences.*
412
+ -->
413
+
414
+ <!--
415
+ ## Model Card Authors
416
+
417
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
418
+ -->
419
+
420
+ <!--
421
+ ## Model Card Contact
422
+
423
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
424
+ -->
checkpoint-11800/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 6,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.53.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
checkpoint-11800/config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.2",
4
+ "transformers": "4.53.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
checkpoint-11800/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6038d08cbee876788c5fa32ed07bfd30fd1770bf473a58fa264328d409009ea2
3
+ size 90864192
checkpoint-11800/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-11800/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e911adf3dc1d324ae635025accae8b98f14dc1e317c55f65ccfaefb04a75310
3
+ size 180607738
checkpoint-11800/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ca744b749fa6d90e9caec2cb8f544482def2ca4025736dad507477773745ec0
3
+ size 14244
checkpoint-11800/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03d4009edce1e0cad37659ad894764721b7236b7435f1dfc1c48c47416533671
3
+ size 988
checkpoint-11800/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:395b95106083eecdb772d8e4e67886417d0cc60d53f88a10c8f4c007d32d2104
3
+ size 1064
checkpoint-11800/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoint-11800/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-11800/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-11800/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 250,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
checkpoint-11800/trainer_state.json ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 1000,
7
+ "global_step": 11800,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.000254323499491353,
14
+ "grad_norm": 6.461288928985596,
15
+ "learning_rate": 0.0,
16
+ "loss": 3.7722,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.254323499491353,
21
+ "grad_norm": 5.289657115936279,
22
+ "learning_rate": 1.5244150559511698e-05,
23
+ "loss": 2.8712,
24
+ "step": 1000
25
+ },
26
+ {
27
+ "epoch": 0.254323499491353,
28
+ "eval_cosine_accuracy": 0.9444736838340759,
29
+ "eval_loss": 0.5577611327171326,
30
+ "eval_runtime": 35.3135,
31
+ "eval_samples_per_second": 269.274,
32
+ "eval_steps_per_second": 1.076,
33
+ "step": 1000
34
+ },
35
+ {
36
+ "epoch": 0.508646998982706,
37
+ "grad_norm": 6.285799026489258,
38
+ "learning_rate": 2.9944048830111903e-05,
39
+ "loss": 1.8052,
40
+ "step": 2000
41
+ },
42
+ {
43
+ "epoch": 0.508646998982706,
44
+ "eval_cosine_accuracy": 0.9498369693756104,
45
+ "eval_loss": 0.5062179565429688,
46
+ "eval_runtime": 34.9468,
47
+ "eval_samples_per_second": 272.099,
48
+ "eval_steps_per_second": 1.087,
49
+ "step": 2000
50
+ },
51
+ {
52
+ "epoch": 0.762970498474059,
53
+ "grad_norm": 6.981422424316406,
54
+ "learning_rate": 2.8250254323499494e-05,
55
+ "loss": 1.2908,
56
+ "step": 3000
57
+ },
58
+ {
59
+ "epoch": 0.762970498474059,
60
+ "eval_cosine_accuracy": 0.9575139284133911,
61
+ "eval_loss": 0.4583439528942108,
62
+ "eval_runtime": 34.7917,
63
+ "eval_samples_per_second": 273.312,
64
+ "eval_steps_per_second": 1.092,
65
+ "step": 3000
66
+ },
67
+ {
68
+ "epoch": 1.0172852058973056,
69
+ "grad_norm": 6.195133209228516,
70
+ "learning_rate": 2.6554764326890472e-05,
71
+ "loss": 1.0201,
72
+ "step": 4000
73
+ },
74
+ {
75
+ "epoch": 1.0172852058973056,
76
+ "eval_cosine_accuracy": 0.9621411561965942,
77
+ "eval_loss": 0.4364590048789978,
78
+ "eval_runtime": 35.4237,
79
+ "eval_samples_per_second": 268.436,
80
+ "eval_steps_per_second": 1.073,
81
+ "step": 4000
82
+ },
83
+ {
84
+ "epoch": 1.2714794102694458,
85
+ "grad_norm": 6.555699825286865,
86
+ "learning_rate": 2.4859274330281453e-05,
87
+ "loss": 1.2224,
88
+ "step": 5000
89
+ },
90
+ {
91
+ "epoch": 1.2714794102694458,
92
+ "eval_cosine_accuracy": 0.962666928768158,
93
+ "eval_loss": 0.4258391261100769,
94
+ "eval_runtime": 36.1657,
95
+ "eval_samples_per_second": 262.928,
96
+ "eval_steps_per_second": 1.051,
97
+ "step": 5000
98
+ },
99
+ {
100
+ "epoch": 1.5256736146415861,
101
+ "grad_norm": 4.430365562438965,
102
+ "learning_rate": 2.316378433367243e-05,
103
+ "loss": 1.1341,
104
+ "step": 6000
105
+ },
106
+ {
107
+ "epoch": 1.5256736146415861,
108
+ "eval_cosine_accuracy": 0.964454710483551,
109
+ "eval_loss": 0.4155160188674927,
110
+ "eval_runtime": 35.2226,
111
+ "eval_samples_per_second": 269.969,
112
+ "eval_steps_per_second": 1.079,
113
+ "step": 6000
114
+ },
115
+ {
116
+ "epoch": 1.7798678190137265,
117
+ "grad_norm": 5.276082515716553,
118
+ "learning_rate": 2.146998982706002e-05,
119
+ "loss": 1.0798,
120
+ "step": 7000
121
+ },
122
+ {
123
+ "epoch": 1.7798678190137265,
124
+ "eval_cosine_accuracy": 0.9657166600227356,
125
+ "eval_loss": 0.42145127058029175,
126
+ "eval_runtime": 35.2976,
127
+ "eval_samples_per_second": 269.395,
128
+ "eval_steps_per_second": 1.077,
129
+ "step": 7000
130
+ },
131
+ {
132
+ "epoch": 2.0340620233858666,
133
+ "grad_norm": 4.906863689422607,
134
+ "learning_rate": 1.9774499830451e-05,
135
+ "loss": 1.0249,
136
+ "step": 8000
137
+ },
138
+ {
139
+ "epoch": 2.0340620233858666,
140
+ "eval_cosine_accuracy": 0.9681354761123657,
141
+ "eval_loss": 0.41128453612327576,
142
+ "eval_runtime": 35.164,
143
+ "eval_samples_per_second": 270.419,
144
+ "eval_steps_per_second": 1.081,
145
+ "step": 8000
146
+ },
147
+ {
148
+ "epoch": 2.288256227758007,
149
+ "grad_norm": 6.295294761657715,
150
+ "learning_rate": 1.808070532383859e-05,
151
+ "loss": 0.9443,
152
+ "step": 9000
153
+ },
154
+ {
155
+ "epoch": 2.288256227758007,
156
+ "eval_cosine_accuracy": 0.9672941565513611,
157
+ "eval_loss": 0.4052944779396057,
158
+ "eval_runtime": 35.2065,
159
+ "eval_samples_per_second": 270.092,
160
+ "eval_steps_per_second": 1.079,
161
+ "step": 9000
162
+ },
163
+ {
164
+ "epoch": 2.5424504321301473,
165
+ "grad_norm": 5.057905197143555,
166
+ "learning_rate": 1.6386910817226178e-05,
167
+ "loss": 0.9178,
168
+ "step": 10000
169
+ },
170
+ {
171
+ "epoch": 2.5424504321301473,
172
+ "eval_cosine_accuracy": 0.968766450881958,
173
+ "eval_loss": 0.39761021733283997,
174
+ "eval_runtime": 35.1256,
175
+ "eval_samples_per_second": 270.714,
176
+ "eval_steps_per_second": 1.082,
177
+ "step": 10000
178
+ },
179
+ {
180
+ "epoch": 2.796644636502288,
181
+ "grad_norm": 5.986538410186768,
182
+ "learning_rate": 1.4691420820617159e-05,
183
+ "loss": 0.8991,
184
+ "step": 11000
185
+ },
186
+ {
187
+ "epoch": 2.796644636502288,
188
+ "eval_cosine_accuracy": 0.9703438878059387,
189
+ "eval_loss": 0.40334755182266235,
190
+ "eval_runtime": 36.7674,
191
+ "eval_samples_per_second": 258.626,
192
+ "eval_steps_per_second": 1.034,
193
+ "step": 11000
194
+ }
195
+ ],
196
+ "logging_steps": 1000,
197
+ "max_steps": 19660,
198
+ "num_input_tokens_seen": 0,
199
+ "num_train_epochs": 5,
200
+ "save_steps": 500,
201
+ "stateful_callbacks": {
202
+ "TrainerControl": {
203
+ "args": {
204
+ "should_epoch_stop": false,
205
+ "should_evaluate": false,
206
+ "should_log": false,
207
+ "should_save": true,
208
+ "should_training_stop": false
209
+ },
210
+ "attributes": {}
211
+ }
212
+ },
213
+ "total_flos": 0.0,
214
+ "train_batch_size": 256,
215
+ "trial_name": null,
216
+ "trial_params": null
217
+ }
checkpoint-11800/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b61ef0de5bcb7bee01b87b6bd644bcb28374d5ce6c476638cb500a99eb6d31cf
3
+ size 5752
checkpoint-11800/vocab.txt ADDED
The diff for this file is too large to render. See raw diff