File size: 11,754 Bytes
abbcb88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import os
import json
import torch
from typing import Any, Dict, List, Literal, Optional
from dataclasses import asdict, dataclass, field
@dataclass
class DatasetAttr:
load_from: str
dataset_name: Optional[str] = None
file_name: Optional[str] = None
file_sha1: Optional[str] = None
def __repr__(self) -> str:
if self.dataset_name is not None:
return self.dataset_name
else:
return self.file_name
def __post_init__(self):
self.prompt_column = "instruction"
self.query_column = "input"
self.response_column = "output"
self.history_column = None
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co."}
)
use_fast_tokenizer: Optional[bool] = field(
default=False,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}
)
use_auth_token: Optional[bool] = field(
default=False,
metadata={"help": "Will use the token generated when running `huggingface-cli login`."}
)
model_revision: Optional[str] = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}
)
quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the model."}
)
quantization_type: Optional[Literal["fp4", "nf4"]] = field(
default="nf4",
metadata={"help": "Quantization data type to use in int4 training."}
)
double_quantization: Optional[bool] = field(
default=True,
metadata={"help": "Whether to use double quantization in int4 training or not."}
)
compute_dtype: Optional[torch.dtype] = field(
default=None,
metadata={"help": "Used in quantization configs. Do not specify this argument manually."}
)
checkpoint_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory(s) containing the delta model checkpoints as well as the configurations."}
)
reward_model: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory containing the checkpoints of the reward model."}
)
resume_lora_training: Optional[bool] = field(
default=True,
metadata={"help": "Whether to resume training from the last LoRA weights or create new weights after merging them."}
)
plot_loss: Optional[bool] = field(
default=False,
metadata={"help": "Whether to plot the training loss after fine-tuning or not."}
)
def __post_init__(self):
if self.checkpoint_dir is not None: # support merging multiple lora weights
self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")]
if self.quantization_bit is not None:
assert self.quantization_bit in [4, 8], "We only accept 4-bit or 8-bit quantization."
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and evaluation.
"""
dataset: Optional[str] = field(
default="alpaca_zh",
metadata={"help": "The name of provided dataset(s) to use. Use comma to separate multiple datasets."}
)
dataset_dir: Optional[str] = field(
default="data",
metadata={"help": "The name of the folder containing datasets."}
)
split: Optional[str] = field(
default="train",
metadata={"help": "Which dataset split to use for training and evaluation."}
)
overwrite_cache: Optional[bool] = field(
default=False,
metadata={"help": "Overwrite the cached training and evaluation sets."}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."}
)
max_source_length: Optional[int] = field(
default=512,
metadata={"help": "The maximum total input sequence length after tokenization."}
)
max_target_length: Optional[int] = field(
default=512,
metadata={"help": "The maximum total output sequence length after tokenization."}
)
max_samples: Optional[int] = field(
default=None,
metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}
)
eval_num_beams: Optional[int] = field(
default=None,
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"}
)
ignore_pad_token_for_loss: Optional[bool] = field(
default=True,
metadata={"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."}
)
source_prefix: Optional[str] = field(
default=None,
metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
dev_ratio: Optional[float] = field(
default=0,
metadata={"help": "Proportion of the dataset to include in the development set, should be between 0.0 and 1.0."}
)
prompt_template: Optional[str] = field(
default="alpaca",
metadata={"help": "Which template to use for constructing prompts in training and inference."}
)
def __post_init__(self): # support mixing multiple datasets
dataset_names = [ds.strip() for ds in self.dataset.split(",")]
with open(os.path.join(self.dataset_dir, "dataset_info.json"), "r") as f:
dataset_info = json.load(f)
self.dataset_list: List[DatasetAttr] = []
for name in dataset_names:
if name not in dataset_info:
raise ValueError("Undefined dataset {} in dataset_info.json.".format(name))
if "hf_hub_url" in dataset_info[name]:
dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"])
elif "script_url" in dataset_info[name]:
dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"])
else:
dataset_attr = DatasetAttr(
"file",
file_name=dataset_info[name]["file_name"],
file_sha1=dataset_info[name].get("file_sha1", None)
)
if "columns" in dataset_info[name]:
dataset_attr.prompt_column = dataset_info[name]["columns"].get("prompt", None)
dataset_attr.query_column = dataset_info[name]["columns"].get("query", None)
dataset_attr.response_column = dataset_info[name]["columns"].get("response", None)
dataset_attr.history_column = dataset_info[name]["columns"].get("history", None)
self.dataset_list.append(dataset_attr)
@dataclass
class FinetuningArguments:
"""
Arguments pertaining to which techniques we are going to fine-tuning with.
"""
finetuning_type: Optional[Literal["none", "freeze", "lora", "full"]] = field(
default="lora",
metadata={"help": "Which fine-tuning method to use."}
)
num_layer_trainable: Optional[int] = field(
default=3,
metadata={"help": "Number of trainable layers for Freeze fine-tuning."}
)
name_module_trainable: Optional[Literal["mlp", "self_attn", "self_attention"]] = field(
default="mlp",
metadata={"help": "Name of trainable modules for Freeze fine-tuning. \
LLaMA choices: [\"mlp\", \"self_attn\"], \
BLOOM choices: [\"mlp\", \"self_attention\"], \
Baichuan choices: [\"mlp\", \"self_attn\"]"}
)
lora_rank: Optional[int] = field(
default=8,
metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}
)
lora_alpha: Optional[float] = field(
default=32.0,
metadata={"help": "The scale factor for LoRA fine-tuning (similar with the learning rate)."}
)
lora_dropout: Optional[float] = field(
default=0.1,
metadata={"help": "Dropout rate for the LoRA fine-tuning."}
)
lora_target: Optional[str] = field(
default="q_proj,v_proj",
metadata={"help": "Name(s) of target modules to apply LoRA. Use comma to separate multiple modules. \
LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
BLOOM choices: [\"query_key_value\", \"self_attention.dense\", \"mlp.dense\"], \
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"]"}
)
def __post_init__(self):
if isinstance(self.lora_target, str): # support custom target modules/layers of LoRA
self.lora_target = [target.strip() for target in self.lora_target.split(",")]
if self.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = [27 - k for k in range(self.num_layer_trainable)]
else: # fine-tuning the first n layers if num_layer_trainable < 0
trainable_layer_ids = [k for k in range(-self.num_layer_trainable)]
self.trainable_layers = ["layers.{:d}.{}".format(idx, self.name_module_trainable) for idx in trainable_layer_ids]
assert self.finetuning_type in ["none", "freeze", "lora", "full"], "Invalid fine-tuning method."
def save_to_json(self, json_path: str):
"""Saves the content of this instance in JSON format inside `json_path`."""
json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n"
with open(json_path, "w", encoding="utf-8") as f:
f.write(json_string)
@classmethod
def load_from_json(cls, json_path: str):
"""Creates an instance from the content of `json_path`."""
with open(json_path, "r", encoding="utf-8") as f:
text = f.read()
return cls(**json.loads(text))
@dataclass
class GeneratingArguments:
"""
Arguments pertaining to specify the decoding parameters.
"""
do_sample: Optional[bool] = field(
default=True,
metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."}
)
temperature: Optional[float] = field(
default=0.95,
metadata={"help": "The value used to modulate the next token probabilities."}
)
top_p: Optional[float] = field(
default=0.7,
metadata={"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept."}
)
top_k: Optional[int] = field(
default=50,
metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."}
)
num_beams: Optional[int] = field(
default=1,
metadata={"help": "Number of beams for beam search. 1 means no beam search."}
)
max_new_tokens: Optional[int] = field(
default=512,
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."}
)
repetition_penalty: Optional[float] = field(
default=1.0,
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."}
)
def to_dict(self) -> Dict[str, Any]:
return asdict(self)
|