File size: 2,518 Bytes
abbcb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# coding=utf-8
# Implements parameter-efficient training of reward models.
# This code is inspired by:
# https://github.com/lvwerra/trl/blob/main/examples/summarization/scripts/reward_summarization.py
# https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py


from utils import (
    PairwiseDataCollatorWithPadding,
    PairwisePeftTrainer,
    LogCallback,
    load_pretrained,
    prepare_args,
    prepare_data,
    preprocess_data,
    compute_accuracy,
    plot_loss
)

def main():

    # Prepare pretrained model and dataset
    model_args, data_args, training_args, finetuning_args = prepare_args(stage="rm")
    dataset = prepare_data(model_args, data_args)
    model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="rm")
    dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="rm")
    data_collator = PairwiseDataCollatorWithPadding(tokenizer)

    training_args.remove_unused_columns = False # important for pairwise dataset

    # Split the dataset
    if training_args.do_train:
        if data_args.dev_ratio > 1e-6:
            dataset = dataset.train_test_split(test_size=data_args.dev_ratio)
            trainer_kwargs = {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
        else:
            trainer_kwargs = {"train_dataset": dataset}
    else: # do_eval or do_predict
        trainer_kwargs = {"eval_dataset": dataset}

    # Initialize our Trainer
    trainer = PairwisePeftTrainer(
        finetuning_args=finetuning_args,
        model=model,
        args=training_args,
        tokenizer=tokenizer,
        data_collator=data_collator,
        callbacks=[LogCallback()],
        compute_metrics=compute_accuracy,
        **trainer_kwargs
    )

    # Training
    if training_args.do_train:
        train_result = trainer.train()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()
        trainer.save_model()
        if trainer.is_world_process_zero() and model_args.plot_loss:
            plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate(metric_key_prefix="eval")
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()