--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: flan-t5-xl-deepspeed-zero3-summary results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: test args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 42.6105 --- # flan-t5-xl-deepspeed-zero3-summary This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.4054 - Rouge1: 42.6105 - Rouge2: 20.2181 - Rougel: 29.7866 - Rougelsum: 39.4431 - Gen Len: 98.0013 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 10 - total_train_batch_size: 80 - total_eval_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.6011 | 1.0 | 3589 | 1.4054 | 42.6105 | 20.2181 | 29.7866 | 39.4431 | 98.0013 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.0 - Datasets 2.9.0 - Tokenizers 0.13.3