经过P-Tuning训练的model用于Inference **Usage** # Load the configuration and model: from peft import PeftModel, PeftConfig peft_model_id = "Laurie/t5-large_PREFIX_TUNING_SEQ2SEQ" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id) # Get and tokenize some text about financial news: inputs = tokenizer( "Berkshire Hathaway CEO Warren Buffett on Saturday assailed regulators, politicians and the media for confusing the public about the safety of U.S. banks and said that conditions could worsen.", return_tensors="pt" ) # Put the model on a GPU and generate the predicted text sentiment: model.to(device) with torch.no_grad(): inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)) # => ['negative']