Pushed Lunar Lander
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 258.53 +/- 17.44
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78b63061e680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78b63061e710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78b63061e7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78b63061e830>", "_build": "<function ActorCriticPolicy._build at 0x78b63061e8c0>", "forward": "<function ActorCriticPolicy.forward at 0x78b63061e950>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78b63061e9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78b63061ea70>", "_predict": "<function ActorCriticPolicy._predict at 0x78b63061eb00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78b63061eb90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78b63061ec20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78b63061ecb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78b63058ebc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729254372809561539, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIrnY75WAHI9YlVNPhAPLr5j9Q09fqqsPAAAAAAAAAAAWoKWvUh5gLpHDpW8Rdy9PFp07Ds0ZKS9AACAPwAAgD/gVTs+mBLCPeR1t72Bloe+CAsWPUxCgL0AAAAAAAAAACY03r3h2IG6HhDTPM2y6Tvynkk6HbvavAAAgD8AAAAA+tQdvpzjErxgg1a7vnqoufpyiz3slos6AACAPwAAgD+afw0+u7XTPm6Oebzb18i+rmJCPYo+6zwAAAAAAAAAAHMJPr69cwo/RCQbveByrL56Yj+9/c+2PAAAAAAAAAAANoafvudLZD7w2N09QPmXvik0h71nOoQ7AAAAAAAAAADGnF++6fe2Ppbn070Cqo6+4gHSvSnqOD0AAAAAAAAAAEb3Oj5uqr68HqHPOc61ZLhkDSi+YoAPuQAAgD8AAIA/WhpFPv+m7D5D5/K+C1e7vgO9Fr0aBYa9AAAAAAAAAAAApoc+V8skPwpJdTyfLeW++fC1PlZJbL4AAAAAAAAAAI0WBL4o/xk/9wMPvtIuur71NIK9ekD1uwAAAAAAAAAADgKNvpjpMD/q8hK++vi6vv/lCL4e6rs9AAAAAAAAAACmHS8+8q+CP9mvwT6P6vi+jqiUPlpyPT4AAAAAAAAAAFOwVj78z6o+EXmevRN9lL49Aos9YrdTvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHnHI6r/86MAWyUS/+MAXSUR0Cd1zzByjpLdX2UKGgGR0ByLl7OVxCIaAdNhQFoCEdAndeC0F8ohXV9lChoBkdAcQteqaPS2GgHTToBaAhHQJ3XolSjxkN1fZQoaAZHQGU5DQiRnvloB03oA2gIR0Cd2VL127nQdX2UKGgGR0BxHwCA+Y+jaAdNcgFoCEdAndlsGHHmzXV9lChoBkdAcLMFMqSX+mgHS/toCEdAnjOim2sq8XV9lChoBkdAa771oQFs6GgHTQMBaAhHQJ4zw68xsVN1fZQoaAZHQHAeRguyu6poB0viaAhHQJ40j5ckdFR1fZQoaAZHQHCA9GZuyeJoB0v4aAhHQJ405Gsmv4d1fZQoaAZHQHMJvqgRK6FoB0v7aAhHQJ41/ndO6/Z1fZQoaAZHQHAXuR1X/5toB00MAWgIR0CeNqZlWfbsdX2UKGgGR0ByBD5HmRvFaAdNdwFoCEdAnjf0mUnogXV9lChoBkdAcWjFJg9eQmgHS/loCEdAnjhFp9JBgXV9lChoBkdAcZ44gzP8h2gHS/VoCEdAnjhtd3SrpHV9lChoBkdAcn3U2kzoEGgHTQABaAhHQJ44rYBeXzF1fZQoaAZHQHLr9lRP421oB00YAWgIR0CeONijtXxOdX2UKGgGR0BvVmzIFNcoaAdL22gIR0CeOO5EMLF5dX2UKGgGR0BwBvj94u9OaAdL6WgIR0CeOoyQgcLjdX2UKGgGR0Bwywm+j/MoaAdNBAFoCEdAnjuPsNUfgnV9lChoBkdAct8dvsJID2gHS+toCEdAnj3lvIfbK3V9lChoBkdAb46jcEeQuGgHS+VoCEdAnj5/nSv1UXV9lChoBkdAcSNJV81Gb2gHTT4BaAhHQJ4/fYtg8bJ1fZQoaAZHQG+CxekYXO5oB0v4aAhHQJ5By2G7Bft1fZQoaAZHQG1x3KbKA8VoB0v3aAhHQJ5B/ND+irV1fZQoaAZHQG85624NI9VoB0v6aAhHQJ5DD72tdRl1fZQoaAZHQHAMyHZbpvBoB02BAWgIR0CeQ0n4fwI/dX2UKGgGR0BwUGnHeaa1aAdLzmgIR0CeQ6/CIk7fdX2UKGgGR0BwFlQIldC3aAdNHwFoCEdAnkRIm9g4O3V9lChoBkdAcXN+JP69CmgHTScBaAhHQJ5E3sVtXPt1fZQoaAZHQG1z4yoGY8doB00MAmgIR0CeRX4REnb7dX2UKGgGR0BChF18stkGaAdLvmgIR0CeRo5N47iidX2UKGgGR0Bwx/y/bj95aAdNAwFoCEdAnkcqXnhbW3V9lChoBkdAcoYornTy8WgHS+FoCEdAnkh03fhuO3V9lChoBkdAbzSoHcDbJ2gHS/NoCEdAnkmXWattAXV9lChoBkdAclm/1QIldGgHTQIBaAhHQJ5L2LDQ7cR1fZQoaAZHQHC6pntfG+9oB0v3aAhHQJ5ML9qDbrV1fZQoaAZHQG/ydVWCEpRoB0vyaAhHQJ5MgMhHLA51fZQoaAZHQG5Tj8cdYGNoB0vzaAhHQJ5M//giu+11fZQoaAZHQHDLMbNr0rdoB0vXaAhHQJ5NDtOVPep1fZQoaAZHQHJW8OkLx7RoB00TAWgIR0CeTUnKnvUjdX2UKGgGR0Bh9k+5e7cxaAdN6ANoCEdAnk4n/Pw/gXV9lChoBkdAYQC1RceKbmgHTegDaAhHQJ5OTUZvUBp1fZQoaAZHQG/nFN1yNn5oB00hAWgIR0CeTs/zJ6ppdX2UKGgGR0Bl2Z17pmmMaAdN6ANoCEdAnlDnBLwnY3V9lChoBkdAcXrEFnqVyGgHTT4BaAhHQJ5RTdIoVmB1fZQoaAZHQHFg9CmdiDxoB01FAWgIR0CeUoRTCLuQdX2UKGgGR0BwGccsDnvEaAdL6WgIR0CeU6XyRSxadX2UKGgGR0Ah+PatcObzaAdLzWgIR0CeVGh7mdRSdX2UKGgGR0ByVmnsLORlaAdNFQFoCEdAnlR4EGJN03V9lChoBkdAcoUWTX8O1GgHTQsBaAhHQJ5UdnlGPPt1fZQoaAZHQG1Cz/yXlbNoB0v5aAhHQJ5U6jpLVWl1fZQoaAZHQG59cNH6MzdoB0vqaAhHQJ5VZr2xptd1fZQoaAZHQG2X2MCLdepoB0vtaAhHQJ5WBr0rbxp1fZQoaAZHQHGESqlxffJoB01kAWgIR0CeV9Xp4bCKdX2UKGgGR0BtJOHvc8DCaAdL5WgIR0CeWGlFtsN2dX2UKGgGR0BwjGQT238XaAdL+WgIR0CeWJzHS4OMdX2UKGgGR0BuinsAvL5iaAdL9mgIR0CeWkHS4OMEdX2UKGgGR0Bj1e9DhLoPaAdN6ANoCEdAnlrHbM5fdHV9lChoBkdAcTKG8mKIi2gHS/NoCEdAnls/BacI7nV9lChoBkdAb3n89fTkQ2gHS+NoCEdAnluCgTRIBnV9lChoBkdAczM7A+IM0GgHS/loCEdAnlxLxNIsiHV9lChoBkdAbuNNYbKif2gHTQIBaAhHQJ5dDfUF0Pp1fZQoaAZHQHMzCrPt2LZoB00OAWgIR0CeXgMlkYoBdX2UKGgGR0BvIW3OObRXaAdL2mgIR0CeX/Vk+X7cdX2UKGgGR0Bxg2qXF98aaAdNBwFoCEdAnmC3+6y0KXV9lChoBkdActOHX2/SIGgHTRkBaAhHQJ5iI9dNWU91fZQoaAZHQHCo7H2h7E5oB0vkaAhHQJ5iUf8uSOl1fZQoaAZHQGSrCRGMGX5oB03oA2gIR0CeZCnVoYeldX2UKGgGR0Bvp0dV/+bWaAdL9WgIR0CeZDZpSJj2dX2UKGgGR0Bv+1PHktEoaAdNBgFoCEdAnmRRH5Jsf3V9lChoBkdAcOFSF49ovmgHS/xoCEdAnmS+8scyWXV9lChoBkdAcEefixVyWGgHS+NoCEdAnmWGJemelXV9lChoBkdAbXdd3Sro4mgHS+JoCEdAnmaLIgeRxXV9lChoBkdAYcBHktEofGgHTegDaAhHQJ5oFL9MsYl1fZQoaAZHQHKXVCb+cYtoB00PAWgIR0CeajwBHTZydX2UKGgGR0BthHuG9HtnaAdL3mgIR0CeaoTdtVJddX2UKGgGR0A43iMo+fRNaAdNewNoCEdAnmsYDDCP63V9lChoBkdAYrvEhq0ty2gHTegDaAhHQJ5rS8SPEKp1fZQoaAZHQG3Of1pTMq1oB00oAWgIR0Cea9N7BwdbdX2UKGgGR0Bw4HFNtZV5aAdNBAFoCEdAnmv0ONHYpXV9lChoBkdAbig6EJ0GNmgHS+1oCEdAnmzEg4ffXXV9lChoBkdAb/VFm4Ajp2gHS/loCEdAnm0BZIQOF3V9lChoBkdAcQFCu2Zy/GgHTQMBaAhHQJ5twfLcKw91fZQoaAZHQHFHWpQ1rIpoB00cAWgIR0CebhFt8/lidX2UKGgGR0BwKtk+X7cgaAdL22gIR0CebhQe3hGZdX2UKGgGR0Bxxzwe/5+IaAdNCwFoCEdAnnEsD0UXYXV9lChoBkdAcZeu9OARTWgHTWUBaAhHQJ5yG3fAKv51fZQoaAZHQG6TrVnVXmxoB0vsaAhHQJ5yXgm7aqV1fZQoaAZHQHCNKBqbjLloB00iAWgIR0CedT3fyf+TdX2UKGgGR0BwjhFocrAhaAdL/mgIR0CedVbyH2ytdX2UKGgGR0BwSBCiRGMGaAdNEQFoCEdAnnV+xfOUuHV9lChoBkdAb4M5d4Vym2gHS+VoCEdAnnYFWwNb1XV9lChoBkdAa/aDWbwz+GgHTXkDaAhHQJ52MkzGgjB1fZQoaAZHQHE126ClJpZoB00IAWgIR0Ced0p1ie/YdX2UKGgGR0BwFg9pyp71aAdL52gIR0Ced1pItlI3dX2UKGgGR0Bs4WFBY3efaAdNSQFoCEdAnnfcBltj1HV9lChoBkdAYPJ7BwdbPmgHTegDaAhHQJ54wmNR3vB1fZQoaAZHQHB8i8J2MbZoB0v+aAhHQJ541aLXL/11fZQoaAZHQG72EG7jDKpoB01RAWgIR0CeeUNyo4uLdX2UKGgGR8Ajp/kNnXd1aAdLzGgIR0CeekS0Sh8IdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a56c98a58609b3cd60152c53550598c0e851cefc693bf9a85226abab2e0ef471
|
3 |
+
size 148019
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78b63061e680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78b63061e710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78b63061e7a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78b63061e830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78b63061e8c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78b63061e950>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78b63061e9e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78b63061ea70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78b63061eb00>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78b63061eb90>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78b63061ec20>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78b63061ecb0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78b63058ebc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1729254372809561539,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIrnY75WAHI9YlVNPhAPLr5j9Q09fqqsPAAAAAAAAAAAWoKWvUh5gLpHDpW8Rdy9PFp07Ds0ZKS9AACAPwAAgD/gVTs+mBLCPeR1t72Bloe+CAsWPUxCgL0AAAAAAAAAACY03r3h2IG6HhDTPM2y6Tvynkk6HbvavAAAgD8AAAAA+tQdvpzjErxgg1a7vnqoufpyiz3slos6AACAPwAAgD+afw0+u7XTPm6Oebzb18i+rmJCPYo+6zwAAAAAAAAAAHMJPr69cwo/RCQbveByrL56Yj+9/c+2PAAAAAAAAAAANoafvudLZD7w2N09QPmXvik0h71nOoQ7AAAAAAAAAADGnF++6fe2Ppbn070Cqo6+4gHSvSnqOD0AAAAAAAAAAEb3Oj5uqr68HqHPOc61ZLhkDSi+YoAPuQAAgD8AAIA/WhpFPv+m7D5D5/K+C1e7vgO9Fr0aBYa9AAAAAAAAAAAApoc+V8skPwpJdTyfLeW++fC1PlZJbL4AAAAAAAAAAI0WBL4o/xk/9wMPvtIuur71NIK9ekD1uwAAAAAAAAAADgKNvpjpMD/q8hK++vi6vv/lCL4e6rs9AAAAAAAAAACmHS8+8q+CP9mvwT6P6vi+jqiUPlpyPT4AAAAAAAAAAFOwVj78z6o+EXmevRN9lL49Aos9YrdTvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVEwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHnHI6r/86MAWyUS/+MAXSUR0Cd1zzByjpLdX2UKGgGR0ByLl7OVxCIaAdNhQFoCEdAndeC0F8ohXV9lChoBkdAcQteqaPS2GgHTToBaAhHQJ3XolSjxkN1fZQoaAZHQGU5DQiRnvloB03oA2gIR0Cd2VL127nQdX2UKGgGR0BxHwCA+Y+jaAdNcgFoCEdAndlsGHHmzXV9lChoBkdAcLMFMqSX+mgHS/toCEdAnjOim2sq8XV9lChoBkdAa771oQFs6GgHTQMBaAhHQJ4zw68xsVN1fZQoaAZHQHAeRguyu6poB0viaAhHQJ40j5ckdFR1fZQoaAZHQHCA9GZuyeJoB0v4aAhHQJ405Gsmv4d1fZQoaAZHQHMJvqgRK6FoB0v7aAhHQJ41/ndO6/Z1fZQoaAZHQHAXuR1X/5toB00MAWgIR0CeNqZlWfbsdX2UKGgGR0ByBD5HmRvFaAdNdwFoCEdAnjf0mUnogXV9lChoBkdAcWjFJg9eQmgHS/loCEdAnjhFp9JBgXV9lChoBkdAcZ44gzP8h2gHS/VoCEdAnjhtd3SrpHV9lChoBkdAcn3U2kzoEGgHTQABaAhHQJ44rYBeXzF1fZQoaAZHQHLr9lRP421oB00YAWgIR0CeONijtXxOdX2UKGgGR0BvVmzIFNcoaAdL22gIR0CeOO5EMLF5dX2UKGgGR0BwBvj94u9OaAdL6WgIR0CeOoyQgcLjdX2UKGgGR0Bwywm+j/MoaAdNBAFoCEdAnjuPsNUfgnV9lChoBkdAct8dvsJID2gHS+toCEdAnj3lvIfbK3V9lChoBkdAb46jcEeQuGgHS+VoCEdAnj5/nSv1UXV9lChoBkdAcSNJV81Gb2gHTT4BaAhHQJ4/fYtg8bJ1fZQoaAZHQG+CxekYXO5oB0v4aAhHQJ5By2G7Bft1fZQoaAZHQG1x3KbKA8VoB0v3aAhHQJ5B/ND+irV1fZQoaAZHQG85624NI9VoB0v6aAhHQJ5DD72tdRl1fZQoaAZHQHAMyHZbpvBoB02BAWgIR0CeQ0n4fwI/dX2UKGgGR0BwUGnHeaa1aAdLzmgIR0CeQ6/CIk7fdX2UKGgGR0BwFlQIldC3aAdNHwFoCEdAnkRIm9g4O3V9lChoBkdAcXN+JP69CmgHTScBaAhHQJ5E3sVtXPt1fZQoaAZHQG1z4yoGY8doB00MAmgIR0CeRX4REnb7dX2UKGgGR0BChF18stkGaAdLvmgIR0CeRo5N47iidX2UKGgGR0Bwx/y/bj95aAdNAwFoCEdAnkcqXnhbW3V9lChoBkdAcoYornTy8WgHS+FoCEdAnkh03fhuO3V9lChoBkdAbzSoHcDbJ2gHS/NoCEdAnkmXWattAXV9lChoBkdAclm/1QIldGgHTQIBaAhHQJ5L2LDQ7cR1fZQoaAZHQHC6pntfG+9oB0v3aAhHQJ5ML9qDbrV1fZQoaAZHQG/ydVWCEpRoB0vyaAhHQJ5MgMhHLA51fZQoaAZHQG5Tj8cdYGNoB0vzaAhHQJ5M//giu+11fZQoaAZHQHDLMbNr0rdoB0vXaAhHQJ5NDtOVPep1fZQoaAZHQHJW8OkLx7RoB00TAWgIR0CeTUnKnvUjdX2UKGgGR0Bh9k+5e7cxaAdN6ANoCEdAnk4n/Pw/gXV9lChoBkdAYQC1RceKbmgHTegDaAhHQJ5OTUZvUBp1fZQoaAZHQG/nFN1yNn5oB00hAWgIR0CeTs/zJ6ppdX2UKGgGR0Bl2Z17pmmMaAdN6ANoCEdAnlDnBLwnY3V9lChoBkdAcXrEFnqVyGgHTT4BaAhHQJ5RTdIoVmB1fZQoaAZHQHFg9CmdiDxoB01FAWgIR0CeUoRTCLuQdX2UKGgGR0BwGccsDnvEaAdL6WgIR0CeU6XyRSxadX2UKGgGR0Ah+PatcObzaAdLzWgIR0CeVGh7mdRSdX2UKGgGR0ByVmnsLORlaAdNFQFoCEdAnlR4EGJN03V9lChoBkdAcoUWTX8O1GgHTQsBaAhHQJ5UdnlGPPt1fZQoaAZHQG1Cz/yXlbNoB0v5aAhHQJ5U6jpLVWl1fZQoaAZHQG59cNH6MzdoB0vqaAhHQJ5VZr2xptd1fZQoaAZHQG2X2MCLdepoB0vtaAhHQJ5WBr0rbxp1fZQoaAZHQHGESqlxffJoB01kAWgIR0CeV9Xp4bCKdX2UKGgGR0BtJOHvc8DCaAdL5WgIR0CeWGlFtsN2dX2UKGgGR0BwjGQT238XaAdL+WgIR0CeWJzHS4OMdX2UKGgGR0BuinsAvL5iaAdL9mgIR0CeWkHS4OMEdX2UKGgGR0Bj1e9DhLoPaAdN6ANoCEdAnlrHbM5fdHV9lChoBkdAcTKG8mKIi2gHS/NoCEdAnls/BacI7nV9lChoBkdAb3n89fTkQ2gHS+NoCEdAnluCgTRIBnV9lChoBkdAczM7A+IM0GgHS/loCEdAnlxLxNIsiHV9lChoBkdAbuNNYbKif2gHTQIBaAhHQJ5dDfUF0Pp1fZQoaAZHQHMzCrPt2LZoB00OAWgIR0CeXgMlkYoBdX2UKGgGR0BvIW3OObRXaAdL2mgIR0CeX/Vk+X7cdX2UKGgGR0Bxg2qXF98aaAdNBwFoCEdAnmC3+6y0KXV9lChoBkdActOHX2/SIGgHTRkBaAhHQJ5iI9dNWU91fZQoaAZHQHCo7H2h7E5oB0vkaAhHQJ5iUf8uSOl1fZQoaAZHQGSrCRGMGX5oB03oA2gIR0CeZCnVoYeldX2UKGgGR0Bvp0dV/+bWaAdL9WgIR0CeZDZpSJj2dX2UKGgGR0Bv+1PHktEoaAdNBgFoCEdAnmRRH5Jsf3V9lChoBkdAcOFSF49ovmgHS/xoCEdAnmS+8scyWXV9lChoBkdAcEefixVyWGgHS+NoCEdAnmWGJemelXV9lChoBkdAbXdd3Sro4mgHS+JoCEdAnmaLIgeRxXV9lChoBkdAYcBHktEofGgHTegDaAhHQJ5oFL9MsYl1fZQoaAZHQHKXVCb+cYtoB00PAWgIR0CeajwBHTZydX2UKGgGR0BthHuG9HtnaAdL3mgIR0CeaoTdtVJddX2UKGgGR0A43iMo+fRNaAdNewNoCEdAnmsYDDCP63V9lChoBkdAYrvEhq0ty2gHTegDaAhHQJ5rS8SPEKp1fZQoaAZHQG3Of1pTMq1oB00oAWgIR0Cea9N7BwdbdX2UKGgGR0Bw4HFNtZV5aAdNBAFoCEdAnmv0ONHYpXV9lChoBkdAbig6EJ0GNmgHS+1oCEdAnmzEg4ffXXV9lChoBkdAb/VFm4Ajp2gHS/loCEdAnm0BZIQOF3V9lChoBkdAcQFCu2Zy/GgHTQMBaAhHQJ5twfLcKw91fZQoaAZHQHFHWpQ1rIpoB00cAWgIR0CebhFt8/lidX2UKGgGR0BwKtk+X7cgaAdL22gIR0CebhQe3hGZdX2UKGgGR0Bxxzwe/5+IaAdNCwFoCEdAnnEsD0UXYXV9lChoBkdAcZeu9OARTWgHTWUBaAhHQJ5yG3fAKv51fZQoaAZHQG6TrVnVXmxoB0vsaAhHQJ5yXgm7aqV1fZQoaAZHQHCNKBqbjLloB00iAWgIR0CedT3fyf+TdX2UKGgGR0BwjhFocrAhaAdL/mgIR0CedVbyH2ytdX2UKGgGR0BwSBCiRGMGaAdNEQFoCEdAnnV+xfOUuHV9lChoBkdAb4M5d4Vym2gHS+VoCEdAnnYFWwNb1XV9lChoBkdAa/aDWbwz+GgHTXkDaAhHQJ52MkzGgjB1fZQoaAZHQHE126ClJpZoB00IAWgIR0Ced0p1ie/YdX2UKGgGR0BwFg9pyp71aAdL52gIR0Ced1pItlI3dX2UKGgGR0Bs4WFBY3efaAdNSQFoCEdAnnfcBltj1HV9lChoBkdAYPJ7BwdbPmgHTegDaAhHQJ54wmNR3vB1fZQoaAZHQHB8i8J2MbZoB0v+aAhHQJ541aLXL/11fZQoaAZHQG72EG7jDKpoB01RAWgIR0CeeUNyo4uLdX2UKGgGR8Ajp/kNnXd1aAdLzGgIR0CeekS0Sh8IdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26f668b34f5b9e3937ad9e5317f08ec5e0eb420e714635520d59893fa2e55f32
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ac28e00791ce007c0e9cf4eed8f85b8a69776fcc3d3e1d164f0d122b22263b0
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.4.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (170 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 258.5346389, "std_reward": 17.442026713359148, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-18T13:01:30.081240"}
|