File size: 5,439 Bytes
1501ed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from typing import List, Optional
from matplotlib.pyplot import fill
import numpy as np
import gym
from gym import spaces
from omegaconf import OmegaConf
from robomimic.envs.env_robosuite import EnvRobosuite

class RobomimicImageWrapper(gym.Env):
    def __init__(self, 
        env: EnvRobosuite,
        shape_meta: dict,
        init_state: Optional[np.ndarray]=None,
        render_obs_key='agentview_image',
        ):

        self.env = env
        self.render_obs_key = render_obs_key
        self.init_state = init_state
        self.seed_state_map = dict()
        self._seed = None
        self.shape_meta = shape_meta
        self.render_cache = None
        self.has_reset_before = False
        
        # setup spaces
        action_shape = shape_meta['action']['shape']
        action_space = spaces.Box(
            low=-1,
            high=1,
            shape=action_shape,
            dtype=np.float32
        )
        self.action_space = action_space

        observation_space = spaces.Dict()
        for key, value in shape_meta['obs'].items():
            shape = value['shape']
            min_value, max_value = -1, 1
            if key.endswith('image'):
                min_value, max_value = 0, 1
            elif key.endswith('depth'):
                min_value, max_value = 0, 1
            elif key.endswith('voxels'):
                min_value, max_value = 0, 1
            elif key.endswith('point_cloud'):
                min_value, max_value = -10, 10
            elif key.endswith('quat'):
                min_value, max_value = -1, 1
            elif key.endswith('qpos'):
                min_value, max_value = -1, 1
            elif key.endswith('pos'):
                # better range?
                min_value, max_value = -1, 1
            else:
                raise RuntimeError(f"Unsupported type {key}")
            
            this_space = spaces.Box(
                low=min_value,
                high=max_value,
                shape=shape,
                dtype=np.float32
            )
            observation_space[key] = this_space
        self.observation_space = observation_space


    def get_observation(self, raw_obs=None):
        if raw_obs is None:
            raw_obs = self.env.get_observation()
        
        self.render_cache = raw_obs[self.render_obs_key]

        obs = dict()
        for key in self.observation_space.keys():
            obs[key] = raw_obs[key]
        return obs

    def seed(self, seed=None):
        np.random.seed(seed=seed)
        self._seed = seed
    
    def reset(self):
        if self.init_state is not None:
            if not self.has_reset_before:
                # the env must be fully reset at least once to ensure correct rendering
                self.env.reset()
                self.has_reset_before = True

            # always reset to the same state
            # to be compatible with gym
            raw_obs = self.env.reset_to({'states': self.init_state})
        elif self._seed is not None:
            # reset to a specific seed
            seed = self._seed
            if seed in self.seed_state_map:
                # env.reset is expensive, use cache
                raw_obs = self.env.reset_to({'states': self.seed_state_map[seed]})
            else:
                # robosuite's initializes all use numpy global random state
                np.random.seed(seed=seed)
                raw_obs = self.env.reset()
                state = self.env.get_state()['states']
                self.seed_state_map[seed] = state
            self._seed = None
        else:
            # random reset
            raw_obs = self.env.reset()

        # return obs
        obs = self.get_observation(raw_obs)
        return obs
    
    def step(self, action):
        raw_obs, reward, done, info = self.env.step(action)
        obs = self.get_observation(raw_obs)
        return obs, reward, done, info
    
    def render(self, mode='rgb_array'):
        if self.render_cache is None:
            raise RuntimeError('Must run reset or step before render.')
        img = np.moveaxis(self.render_cache, 0, -1)
        img = (img * 255).astype(np.uint8)
        return img


def test():
    import os
    from omegaconf import OmegaConf
    cfg_path = os.path.expanduser('~/dev/diffusion_policy/diffusion_policy/config/task/lift_image.yaml')
    cfg = OmegaConf.load(cfg_path)
    shape_meta = cfg['shape_meta']


    import robomimic.utils.file_utils as FileUtils
    import robomimic.utils.env_utils as EnvUtils
    from matplotlib import pyplot as plt

    dataset_path = os.path.expanduser('~/dev/diffusion_policy/data/robomimic/datasets/square/ph/image.hdf5')
    env_meta = FileUtils.get_env_metadata_from_dataset(
        dataset_path)

    env = EnvUtils.create_env_from_metadata(
        env_meta=env_meta,
        render=False, 
        render_offscreen=False,
        use_image_obs=True, 
    )

    wrapper = RobomimicImageWrapper(
        env=env,
        shape_meta=shape_meta
    )
    wrapper.seed(0)
    obs = wrapper.reset()
    img = wrapper.render()
    plt.imshow(img)


    # states = list()
    # for _ in range(2):
    #     wrapper.seed(0)
    #     wrapper.reset()
    #     states.append(wrapper.env.get_state()['states'])
    # assert np.allclose(states[0], states[1])

    # img = wrapper.render()
    # plt.imshow(img)
    # wrapper.seed()
    # states.append(wrapper.env.get_state()['states'])