File size: 6,459 Bytes
c1f1d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import numpy as np
from copy import deepcopy

from gym import logger
from gym.vector.vector_env import VectorEnv
from gym.vector.utils import concatenate, create_empty_array

__all__ = ["SyncVectorEnv"]


class SyncVectorEnv(VectorEnv):
    """Vectorized environment that serially runs multiple environments.
    Parameters
    ----------
    env_fns : iterable of callable
        Functions that create the environments.
    observation_space : `gym.spaces.Space` instance, optional
        Observation space of a single environment. If `None`, then the
        observation space of the first environment is taken.
    action_space : `gym.spaces.Space` instance, optional
        Action space of a single environment. If `None`, then the action space
        of the first environment is taken.
    copy : bool (default: `True`)
        If `True`, then the `reset` and `step` methods return a copy of the
        observations.
    """

    def __init__(self, env_fns, observation_space=None, action_space=None, copy=True):
        self.env_fns = env_fns
        self.envs = [env_fn() for env_fn in env_fns]
        self.copy = copy
        self.metadata = self.envs[0].metadata

        if (observation_space is None) or (action_space is None):
            observation_space = observation_space or self.envs[0].observation_space
            action_space = action_space or self.envs[0].action_space
        super(SyncVectorEnv, self).__init__(
            num_envs=len(env_fns),
            observation_space=observation_space,
            action_space=action_space,
        )

        self._check_observation_spaces()
        self.observations = create_empty_array(
            self.single_observation_space, n=self.num_envs, fn=np.zeros
        )
        self._rewards = np.zeros((self.num_envs,), dtype=np.float64)
        self._dones = np.zeros((self.num_envs,), dtype=np.bool_)
        # self._rewards = [0] * self.num_envs
        # self._dones = [False] * self.num_envs
        self._actions = None

    def seed(self, seeds=None):
        if seeds is None:
            seeds = [None for _ in range(self.num_envs)]
        if isinstance(seeds, int):
            seeds = [seeds + i for i in range(self.num_envs)]
        assert len(seeds) == self.num_envs

        for env, seed in zip(self.envs, seeds):
            env.seed(seed)

    def reset_wait(self):
        self._dones[:] = False
        observations = []
        for env in self.envs:
            observation = env.reset()
            observations.append(observation)
        self.observations = concatenate(
            observations, self.observations, self.single_observation_space
        )

        return deepcopy(self.observations) if self.copy else self.observations

    def step_async(self, actions):
        self._actions = actions

    def step_wait(self):
        observations, infos = [], []
        for i, (env, action) in enumerate(zip(self.envs, self._actions)):
            observation, self._rewards[i], self._dones[i], info = env.step(action)
            # if self._dones[i]:
            #     observation = env.reset()
            observations.append(observation)
            infos.append(info)
        self.observations = concatenate(
            observations, self.observations, self.single_observation_space
        )

        return (
            deepcopy(self.observations) if self.copy else self.observations,
            np.copy(self._rewards),
            np.copy(self._dones),
            infos,
        )

    def close_extras(self, **kwargs):
        [env.close() for env in self.envs]

    def _check_observation_spaces(self):
        for env in self.envs:
            if not (env.observation_space == self.single_observation_space):
                break
        else:
            return True
        raise RuntimeError(
            "Some environments have an observation space "
            "different from `{0}`. In order to batch observations, the "
            "observation spaces from all environments must be "
            "equal.".format(self.single_observation_space)
        )
    
    def call(self, name, *args, **kwargs) -> tuple:
        """Calls the method with name and applies args and kwargs.

        Args:
            name: The method name
            *args: The method args
            **kwargs: The method kwargs

        Returns:
            Tuple of results
        """
        results = []
        for env in self.envs:
            function = getattr(env, name)
            if callable(function):
                results.append(function(*args, **kwargs))
            else:
                results.append(function)

        return tuple(results)

    def call_each(self, name: str, 
            args_list: list=None, 
            kwargs_list: list=None):
        n_envs = len(self.envs)
        if args_list is None:
            args_list = [[]] * n_envs
        assert len(args_list) == n_envs

        if kwargs_list is None:
            kwargs_list = [dict()] * n_envs
        assert len(kwargs_list) == n_envs

        results = []
        for i, env in enumerate(self.envs):
            function = getattr(env, name)
            if callable(function):
                results.append(function(*args_list[i], **kwargs_list[i]))
            else:
                results.append(function)

        return tuple(results)


    def render(self, *args, **kwargs):
        return self.call('render', *args, **kwargs)
    
    def set_attr(self, name: str, values):
        """Sets an attribute of the sub-environments.

        Args:
            name: The property name to change
            values: Values of the property to be set to. If ``values`` is a list or
                tuple, then it corresponds to the values for each individual
                environment, otherwise, a single value is set for all environments.

        Raises:
            ValueError: Values must be a list or tuple with length equal to the number of environments.
        """
        if not isinstance(values, (list, tuple)):
            values = [values for _ in range(self.num_envs)]
        if len(values) != self.num_envs:
            raise ValueError(
                "Values must be a list or tuple with length equal to the "
                f"number of environments. Got `{len(values)}` values for "
                f"{self.num_envs} environments."
            )

        for env, value in zip(self.envs, values):
            setattr(env, name, value)