File size: 13,092 Bytes
c1f1d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
from typing import Union
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
import einops
from einops.layers.torch import Rearrange
from termcolor import cprint
from equi_diffpo.model.diffusion.conv1d_components import (
Downsample1d, Upsample1d, Conv1dBlock)
from equi_diffpo.model.diffusion.positional_embedding import SinusoidalPosEmb
logger = logging.getLogger(__name__)
class CrossAttention(nn.Module):
def __init__(self, in_dim, cond_dim, out_dim):
super().__init__()
self.query_proj = nn.Linear(in_dim, out_dim)
self.key_proj = nn.Linear(cond_dim, out_dim)
self.value_proj = nn.Linear(cond_dim, out_dim)
def forward(self, x, cond):
# x: [batch_size, t_act, in_dim]
# cond: [batch_size, t_obs, cond_dim]
# Project x and cond to query, key, and value
query = self.query_proj(x) # [batch_size, horizon, out_dim]
key = self.key_proj(cond) # [batch_size, horizon, out_dim]
value = self.value_proj(cond) # [batch_size, horizon, out_dim]
# Compute attention
attn_weights = torch.matmul(query, key.transpose(-2, -1)) # [batch_size, horizon, horizon]
attn_weights = F.softmax(attn_weights, dim=-1)
# Apply attention
attn_output = torch.matmul(attn_weights, value) # [batch_size, horizon, out_dim]
return attn_output
class ConditionalResidualBlock1D(nn.Module):
def __init__(self,
in_channels,
out_channels,
cond_dim,
kernel_size=3,
n_groups=8,
condition_type='film'):
super().__init__()
self.blocks = nn.ModuleList([
Conv1dBlock(in_channels,
out_channels,
kernel_size,
n_groups=n_groups),
Conv1dBlock(out_channels,
out_channels,
kernel_size,
n_groups=n_groups),
])
self.condition_type = condition_type
cond_channels = out_channels
if condition_type == 'film': # FiLM modulation https://arxiv.org/abs/1709.07871
# predicts per-channel scale and bias
cond_channels = out_channels * 2
self.cond_encoder = nn.Sequential(
nn.Mish(),
nn.Linear(cond_dim, cond_channels),
Rearrange('batch t -> batch t 1'),
)
elif condition_type == 'add':
self.cond_encoder = nn.Sequential(
nn.Mish(),
nn.Linear(cond_dim, out_channels),
Rearrange('batch t -> batch t 1'),
)
elif condition_type == 'cross_attention_add':
self.cond_encoder = CrossAttention(in_channels, cond_dim, out_channels)
elif condition_type == 'cross_attention_film':
cond_channels = out_channels * 2
self.cond_encoder = CrossAttention(in_channels, cond_dim, cond_channels)
elif condition_type == 'mlp_film':
cond_channels = out_channels * 2
self.cond_encoder = nn.Sequential(
nn.Mish(),
nn.Linear(cond_dim, cond_dim),
nn.Mish(),
nn.Linear(cond_dim, cond_channels),
Rearrange('batch t -> batch t 1'),
)
else:
raise NotImplementedError(f"condition_type {condition_type} not implemented")
self.out_channels = out_channels
# make sure dimensions compatible
self.residual_conv = nn.Conv1d(in_channels, out_channels, 1) \
if in_channels != out_channels else nn.Identity()
def forward(self, x, cond=None):
'''
x : [ batch_size x in_channels x horizon ]
cond : [ batch_size x cond_dim]
returns:
out : [ batch_size x out_channels x horizon ]
'''
out = self.blocks[0](x)
if cond is not None:
if self.condition_type == 'film':
embed = self.cond_encoder(cond)
embed = embed.reshape(embed.shape[0], 2, self.out_channels, 1)
scale = embed[:, 0, ...]
bias = embed[:, 1, ...]
out = scale * out + bias
elif self.condition_type == 'add':
embed = self.cond_encoder(cond)
out = out + embed
elif self.condition_type == 'cross_attention_add':
embed = self.cond_encoder(x.permute(0, 2, 1), cond)
embed = embed.permute(0, 2, 1) # [batch_size, out_channels, horizon]
out = out + embed
elif self.condition_type == 'cross_attention_film':
embed = self.cond_encoder(x.permute(0, 2, 1), cond)
embed = embed.permute(0, 2, 1)
embed = embed.reshape(embed.shape[0], 2, self.out_channels, -1)
scale = embed[:, 0, ...]
bias = embed[:, 1, ...]
out = scale * out + bias
elif self.condition_type == 'mlp_film':
embed = self.cond_encoder(cond)
embed = embed.reshape(embed.shape[0], 2, self.out_channels, -1)
scale = embed[:, 0, ...]
bias = embed[:, 1, ...]
out = scale * out + bias
else:
raise NotImplementedError(f"condition_type {self.condition_type} not implemented")
out = self.blocks[1](out)
out = out + self.residual_conv(x)
return out
class ConditionalUnet1D(nn.Module):
def __init__(self,
input_dim,
local_cond_dim=None,
global_cond_dim=None,
diffusion_step_embed_dim=256,
down_dims=[256,512,1024],
kernel_size=3,
n_groups=8,
condition_type='film',
use_down_condition=True,
use_mid_condition=True,
use_up_condition=True,
):
super().__init__()
self.condition_type = condition_type
self.use_down_condition = use_down_condition
self.use_mid_condition = use_mid_condition
self.use_up_condition = use_up_condition
all_dims = [input_dim] + list(down_dims)
start_dim = down_dims[0]
dsed = diffusion_step_embed_dim
diffusion_step_encoder = nn.Sequential(
SinusoidalPosEmb(dsed),
nn.Linear(dsed, dsed * 4),
nn.Mish(),
nn.Linear(dsed * 4, dsed),
)
cond_dim = dsed
if global_cond_dim is not None:
cond_dim += global_cond_dim
in_out = list(zip(all_dims[:-1], all_dims[1:]))
local_cond_encoder = None
if local_cond_dim is not None:
_, dim_out = in_out[0]
dim_in = local_cond_dim
local_cond_encoder = nn.ModuleList([
# down encoder
ConditionalResidualBlock1D(
dim_in, dim_out, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
condition_type=condition_type),
# up encoder
ConditionalResidualBlock1D(
dim_in, dim_out, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
condition_type=condition_type)
])
mid_dim = all_dims[-1]
self.mid_modules = nn.ModuleList([
ConditionalResidualBlock1D(
mid_dim, mid_dim, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
condition_type=condition_type
),
ConditionalResidualBlock1D(
mid_dim, mid_dim, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
condition_type=condition_type
),
])
down_modules = nn.ModuleList([])
for ind, (dim_in, dim_out) in enumerate(in_out):
is_last = ind >= (len(in_out) - 1)
down_modules.append(nn.ModuleList([
ConditionalResidualBlock1D(
dim_in, dim_out, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
condition_type=condition_type),
ConditionalResidualBlock1D(
dim_out, dim_out, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
condition_type=condition_type),
Downsample1d(dim_out) if not is_last else nn.Identity()
]))
up_modules = nn.ModuleList([])
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
is_last = ind >= (len(in_out) - 1)
up_modules.append(nn.ModuleList([
ConditionalResidualBlock1D(
dim_out*2, dim_in, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
condition_type=condition_type),
ConditionalResidualBlock1D(
dim_in, dim_in, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
condition_type=condition_type),
Upsample1d(dim_in) if not is_last else nn.Identity()
]))
final_conv = nn.Sequential(
Conv1dBlock(start_dim, start_dim, kernel_size=kernel_size),
nn.Conv1d(start_dim, input_dim, 1),
)
self.diffusion_step_encoder = diffusion_step_encoder
self.local_cond_encoder = local_cond_encoder
self.up_modules = up_modules
self.down_modules = down_modules
self.final_conv = final_conv
logger.info(
"number of parameters: %e", sum(p.numel() for p in self.parameters())
)
def forward(self,
sample: torch.Tensor,
timestep: Union[torch.Tensor, float, int],
local_cond=None, global_cond=None, **kwargs):
"""
x: (B,T,input_dim)
timestep: (B,) or int, diffusion step
local_cond: (B,T,local_cond_dim)
global_cond: (B,global_cond_dim)
output: (B,T,input_dim)
"""
sample = einops.rearrange(sample, 'b h t -> b t h')
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
timestep_embed = self.diffusion_step_encoder(timesteps)
if global_cond is not None:
if self.condition_type == 'cross_attention':
timestep_embed = timestep_embed.unsqueeze(1).expand(-1, global_cond.shape[1], -1)
global_feature = torch.cat([timestep_embed, global_cond], axis=-1)
# encode local features
h_local = list()
if local_cond is not None:
local_cond = einops.rearrange(local_cond, 'b h t -> b t h')
resnet, resnet2 = self.local_cond_encoder
x = resnet(local_cond, global_feature)
h_local.append(x)
x = resnet2(local_cond, global_feature)
h_local.append(x)
x = sample
h = []
for idx, (resnet, resnet2, downsample) in enumerate(self.down_modules):
if self.use_down_condition:
x = resnet(x, global_feature)
if idx == 0 and len(h_local) > 0:
x = x + h_local[0]
x = resnet2(x, global_feature)
else:
x = resnet(x)
if idx == 0 and len(h_local) > 0:
x = x + h_local[0]
x = resnet2(x)
h.append(x)
x = downsample(x)
for mid_module in self.mid_modules:
if self.use_mid_condition:
x = mid_module(x, global_feature)
else:
x = mid_module(x)
for idx, (resnet, resnet2, upsample) in enumerate(self.up_modules):
x = torch.cat((x, h.pop()), dim=1)
if self.use_up_condition:
x = resnet(x, global_feature)
if idx == len(self.up_modules) and len(h_local) > 0:
x = x + h_local[1]
x = resnet2(x, global_feature)
else:
x = resnet(x)
if idx == len(self.up_modules) and len(h_local) > 0:
x = x + h_local[1]
x = resnet2(x)
x = upsample(x)
x = self.final_conv(x)
x = einops.rearrange(x, 'b t h -> b h t')
return x |