File size: 14,989 Bytes
c1f1d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
from typing import Union, Optional, Tuple
import logging
import torch
import torch.nn as nn
from equi_diffpo.model.diffusion.positional_embedding import SinusoidalPosEmb
from equi_diffpo.model.common.module_attr_mixin import ModuleAttrMixin
logger = logging.getLogger(__name__)
class TransformerForDiffusion(ModuleAttrMixin):
def __init__(self,
input_dim: int,
output_dim: int,
horizon: int,
n_obs_steps: int = None,
cond_dim: int = 0,
n_layer: int = 12,
n_head: int = 12,
n_emb: int = 768,
p_drop_emb: float = 0.1,
p_drop_attn: float = 0.1,
causal_attn: bool=False,
time_as_cond: bool=True,
obs_as_cond: bool=False,
n_cond_layers: int = 0
) -> None:
super().__init__()
# compute number of tokens for main trunk and condition encoder
if n_obs_steps is None:
n_obs_steps = horizon
T = horizon
T_cond = 1
if not time_as_cond:
T += 1
T_cond -= 1
obs_as_cond = cond_dim > 0
if obs_as_cond:
assert time_as_cond
T_cond += n_obs_steps
# input embedding stem
self.input_emb = nn.Linear(input_dim, n_emb)
self.pos_emb = nn.Parameter(torch.zeros(1, T, n_emb))
self.drop = nn.Dropout(p_drop_emb)
# cond encoder
self.time_emb = SinusoidalPosEmb(n_emb)
self.cond_obs_emb = None
if obs_as_cond:
self.cond_obs_emb = nn.Linear(cond_dim, n_emb)
self.cond_pos_emb = None
self.encoder = None
self.decoder = None
encoder_only = False
if T_cond > 0:
self.cond_pos_emb = nn.Parameter(torch.zeros(1, T_cond, n_emb))
if n_cond_layers > 0:
encoder_layer = nn.TransformerEncoderLayer(
d_model=n_emb,
nhead=n_head,
dim_feedforward=4*n_emb,
dropout=p_drop_attn,
activation='gelu',
batch_first=True,
norm_first=True
)
self.encoder = nn.TransformerEncoder(
encoder_layer=encoder_layer,
num_layers=n_cond_layers
)
else:
self.encoder = nn.Sequential(
nn.Linear(n_emb, 4 * n_emb),
nn.Mish(),
nn.Linear(4 * n_emb, n_emb)
)
# decoder
decoder_layer = nn.TransformerDecoderLayer(
d_model=n_emb,
nhead=n_head,
dim_feedforward=4*n_emb,
dropout=p_drop_attn,
activation='gelu',
batch_first=True,
norm_first=True # important for stability
)
self.decoder = nn.TransformerDecoder(
decoder_layer=decoder_layer,
num_layers=n_layer
)
else:
# encoder only BERT
encoder_only = True
encoder_layer = nn.TransformerEncoderLayer(
d_model=n_emb,
nhead=n_head,
dim_feedforward=4*n_emb,
dropout=p_drop_attn,
activation='gelu',
batch_first=True,
norm_first=True
)
self.encoder = nn.TransformerEncoder(
encoder_layer=encoder_layer,
num_layers=n_layer
)
# attention mask
if causal_attn:
# causal mask to ensure that attention is only applied to the left in the input sequence
# torch.nn.Transformer uses additive mask as opposed to multiplicative mask in minGPT
# therefore, the upper triangle should be -inf and others (including diag) should be 0.
sz = T
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
self.register_buffer("mask", mask)
if time_as_cond and obs_as_cond:
S = T_cond
t, s = torch.meshgrid(
torch.arange(T),
torch.arange(S),
indexing='ij'
)
mask = t >= (s-1) # add one dimension since time is the first token in cond
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
self.register_buffer('memory_mask', mask)
else:
self.memory_mask = None
else:
self.mask = None
self.memory_mask = None
# decoder head
self.ln_f = nn.LayerNorm(n_emb)
self.head = nn.Linear(n_emb, output_dim)
# constants
self.T = T
self.T_cond = T_cond
self.horizon = horizon
self.time_as_cond = time_as_cond
self.obs_as_cond = obs_as_cond
self.encoder_only = encoder_only
# init
self.apply(self._init_weights)
logger.info(
"number of parameters: %e", sum(p.numel() for p in self.parameters())
)
def _init_weights(self, module):
ignore_types = (nn.Dropout,
SinusoidalPosEmb,
nn.TransformerEncoderLayer,
nn.TransformerDecoderLayer,
nn.TransformerEncoder,
nn.TransformerDecoder,
nn.ModuleList,
nn.Mish,
nn.Sequential)
if isinstance(module, (nn.Linear, nn.Embedding)):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.MultiheadAttention):
weight_names = [
'in_proj_weight', 'q_proj_weight', 'k_proj_weight', 'v_proj_weight']
for name in weight_names:
weight = getattr(module, name)
if weight is not None:
torch.nn.init.normal_(weight, mean=0.0, std=0.02)
bias_names = ['in_proj_bias', 'bias_k', 'bias_v']
for name in bias_names:
bias = getattr(module, name)
if bias is not None:
torch.nn.init.zeros_(bias)
elif isinstance(module, nn.LayerNorm):
torch.nn.init.zeros_(module.bias)
torch.nn.init.ones_(module.weight)
elif isinstance(module, TransformerForDiffusion):
torch.nn.init.normal_(module.pos_emb, mean=0.0, std=0.02)
if module.cond_obs_emb is not None:
torch.nn.init.normal_(module.cond_pos_emb, mean=0.0, std=0.02)
elif isinstance(module, ignore_types):
# no param
pass
else:
raise RuntimeError("Unaccounted module {}".format(module))
def get_optim_groups(self, weight_decay: float=1e-3):
"""
This long function is unfortunately doing something very simple and is being very defensive:
We are separating out all parameters of the model into two buckets: those that will experience
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
We are then returning the PyTorch optimizer object.
"""
# separate out all parameters to those that will and won't experience regularizing weight decay
decay = set()
no_decay = set()
whitelist_weight_modules = (torch.nn.Linear, torch.nn.MultiheadAttention)
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in self.named_modules():
for pn, p in m.named_parameters():
fpn = "%s.%s" % (mn, pn) if mn else pn # full param name
if pn.endswith("bias"):
# all biases will not be decayed
no_decay.add(fpn)
elif pn.startswith("bias"):
# MultiheadAttention bias starts with "bias"
no_decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
no_decay.add(fpn)
# special case the position embedding parameter in the root GPT module as not decayed
no_decay.add("pos_emb")
no_decay.add("_dummy_variable")
if self.cond_pos_emb is not None:
no_decay.add("cond_pos_emb")
# validate that we considered every parameter
param_dict = {pn: p for pn, p in self.named_parameters()}
inter_params = decay & no_decay
union_params = decay | no_decay
assert (
len(inter_params) == 0
), "parameters %s made it into both decay/no_decay sets!" % (str(inter_params),)
assert (
len(param_dict.keys() - union_params) == 0
), "parameters %s were not separated into either decay/no_decay set!" % (
str(param_dict.keys() - union_params),
)
# create the pytorch optimizer object
optim_groups = [
{
"params": [param_dict[pn] for pn in sorted(list(decay))],
"weight_decay": weight_decay,
},
{
"params": [param_dict[pn] for pn in sorted(list(no_decay))],
"weight_decay": 0.0,
},
]
return optim_groups
def configure_optimizers(self,
learning_rate: float=1e-4,
weight_decay: float=1e-3,
betas: Tuple[float, float]=(0.9,0.95)):
optim_groups = self.get_optim_groups(weight_decay=weight_decay)
optimizer = torch.optim.AdamW(
optim_groups, lr=learning_rate, betas=betas
)
return optimizer
def forward(self,
sample: torch.Tensor,
timestep: Union[torch.Tensor, float, int],
cond: Optional[torch.Tensor]=None, **kwargs):
"""
x: (B,T,input_dim)
timestep: (B,) or int, diffusion step
cond: (B,T',cond_dim)
output: (B,T,input_dim)
"""
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
time_emb = self.time_emb(timesteps).unsqueeze(1)
# (B,1,n_emb)
# process input
input_emb = self.input_emb(sample)
if self.encoder_only:
# BERT
token_embeddings = torch.cat([time_emb, input_emb], dim=1)
t = token_embeddings.shape[1]
position_embeddings = self.pos_emb[
:, :t, :
] # each position maps to a (learnable) vector
x = self.drop(token_embeddings + position_embeddings)
# (B,T+1,n_emb)
x = self.encoder(src=x, mask=self.mask)
# (B,T+1,n_emb)
x = x[:,1:,:]
# (B,T,n_emb)
else:
# encoder
cond_embeddings = time_emb
if self.obs_as_cond:
cond_obs_emb = self.cond_obs_emb(cond)
# (B,To,n_emb)
cond_embeddings = torch.cat([cond_embeddings, cond_obs_emb], dim=1)
tc = cond_embeddings.shape[1]
position_embeddings = self.cond_pos_emb[
:, :tc, :
] # each position maps to a (learnable) vector
x = self.drop(cond_embeddings + position_embeddings)
x = self.encoder(x)
memory = x
# (B,T_cond,n_emb)
# decoder
token_embeddings = input_emb
t = token_embeddings.shape[1]
position_embeddings = self.pos_emb[
:, :t, :
] # each position maps to a (learnable) vector
x = self.drop(token_embeddings + position_embeddings)
# (B,T,n_emb)
x = self.decoder(
tgt=x,
memory=memory,
tgt_mask=self.mask,
memory_mask=self.memory_mask
)
# (B,T,n_emb)
# head
x = self.ln_f(x)
x = self.head(x)
# (B,T,n_out)
return x
def test():
# GPT with time embedding
transformer = TransformerForDiffusion(
input_dim=16,
output_dim=16,
horizon=8,
n_obs_steps=4,
# cond_dim=10,
causal_attn=True,
# time_as_cond=False,
# n_cond_layers=4
)
opt = transformer.configure_optimizers()
timestep = torch.tensor(0)
sample = torch.zeros((4,8,16))
out = transformer(sample, timestep)
# GPT with time embedding and obs cond
transformer = TransformerForDiffusion(
input_dim=16,
output_dim=16,
horizon=8,
n_obs_steps=4,
cond_dim=10,
causal_attn=True,
# time_as_cond=False,
# n_cond_layers=4
)
opt = transformer.configure_optimizers()
timestep = torch.tensor(0)
sample = torch.zeros((4,8,16))
cond = torch.zeros((4,4,10))
out = transformer(sample, timestep, cond)
# GPT with time embedding and obs cond and encoder
transformer = TransformerForDiffusion(
input_dim=16,
output_dim=16,
horizon=8,
n_obs_steps=4,
cond_dim=10,
causal_attn=True,
# time_as_cond=False,
n_cond_layers=4
)
opt = transformer.configure_optimizers()
timestep = torch.tensor(0)
sample = torch.zeros((4,8,16))
cond = torch.zeros((4,4,10))
out = transformer(sample, timestep, cond)
# BERT with time embedding token
transformer = TransformerForDiffusion(
input_dim=16,
output_dim=16,
horizon=8,
n_obs_steps=4,
# cond_dim=10,
# causal_attn=True,
time_as_cond=False,
# n_cond_layers=4
)
opt = transformer.configure_optimizers()
timestep = torch.tensor(0)
sample = torch.zeros((4,8,16))
out = transformer(sample, timestep)
|