File size: 14,304 Bytes
c1f1d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
from typing import Dict, Tuple
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, reduce
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler

from equi_diffpo.model.common.normalizer import LinearNormalizer
from equi_diffpo.policy.base_image_policy import BaseImagePolicy
from equi_diffpo.model.diffusion.transformer_for_diffusion import TransformerForDiffusion
from equi_diffpo.model.diffusion.mask_generator import LowdimMaskGenerator
from equi_diffpo.common.robomimic_config_util import get_robomimic_config
from robomimic.algo import algo_factory
from robomimic.algo.algo import PolicyAlgo
import robomimic.utils.obs_utils as ObsUtils
try:
    import robomimic.models.base_nets as rmbn
    if not hasattr(rmbn, 'CropRandomizer'):
        raise ImportError("CropRandomizer is not in robomimic.models.base_nets")
except ImportError:
    import robomimic.models.obs_core as rmbn
import equi_diffpo.model.vision.crop_randomizer as dmvc
from equi_diffpo.common.pytorch_util import dict_apply, replace_submodules


class DiffusionTransformerHybridImagePolicy(BaseImagePolicy):
    def __init__(self, 
            shape_meta: dict,
            noise_scheduler: DDPMScheduler,
            # task params
            horizon, 
            n_action_steps, 
            n_obs_steps,
            num_inference_steps=None,
            # image
            crop_shape=(76, 76),
            obs_encoder_group_norm=False,
            eval_fixed_crop=False,
            # arch
            n_layer=8,
            n_cond_layers=0,
            n_head=4,
            n_emb=256,
            p_drop_emb=0.0,
            p_drop_attn=0.3,
            causal_attn=True,
            time_as_cond=True,
            obs_as_cond=True,
            pred_action_steps_only=False,
            # parameters passed to step
            **kwargs):
        super().__init__()

        # parse shape_meta
        action_shape = shape_meta['action']['shape']
        assert len(action_shape) == 1
        action_dim = action_shape[0]
        obs_shape_meta = shape_meta['obs']
        obs_config = {
            'low_dim': [],
            'rgb': [],
            'depth': [],
            'scan': []
        }
        obs_key_shapes = dict()
        for key, attr in obs_shape_meta.items():
            shape = attr['shape']
            obs_key_shapes[key] = list(shape)

            type = attr.get('type', 'low_dim')
            if type == 'rgb':
                obs_config['rgb'].append(key)
            elif type == 'low_dim':
                obs_config['low_dim'].append(key)
            else:
                raise RuntimeError(f"Unsupported obs type: {type}")

        # get raw robomimic config
        config = get_robomimic_config(
            algo_name='bc_rnn',
            hdf5_type='image',
            task_name='square',
            dataset_type='ph')
        
        with config.unlocked():
            # set config with shape_meta
            config.observation.modalities.obs = obs_config

            if crop_shape is None:
                for key, modality in config.observation.encoder.items():
                    if modality.obs_randomizer_class == 'CropRandomizer':
                        modality['obs_randomizer_class'] = None
            else:
                # set random crop parameter
                ch, cw = crop_shape
                for key, modality in config.observation.encoder.items():
                    if modality.obs_randomizer_class == 'CropRandomizer':
                        modality.obs_randomizer_kwargs.crop_height = ch
                        modality.obs_randomizer_kwargs.crop_width = cw

        # init global state
        ObsUtils.initialize_obs_utils_with_config(config)

        # load model
        policy: PolicyAlgo = algo_factory(
                algo_name=config.algo_name,
                config=config,
                obs_key_shapes=obs_key_shapes,
                ac_dim=action_dim,
                device='cpu',
            )

        obs_encoder = policy.nets['policy'].nets['encoder'].nets['obs']
        
        if obs_encoder_group_norm:
            # replace batch norm with group norm
            replace_submodules(
                root_module=obs_encoder,
                predicate=lambda x: isinstance(x, nn.BatchNorm2d),
                func=lambda x: nn.GroupNorm(
                    num_groups=x.num_features//16, 
                    num_channels=x.num_features)
            )
            # obs_encoder.obs_nets['agentview_image'].nets[0].nets
        
        # obs_encoder.obs_randomizers['agentview_image']
        if eval_fixed_crop:
            replace_submodules(
                root_module=obs_encoder,
                predicate=lambda x: isinstance(x, rmbn.CropRandomizer),
                func=lambda x: dmvc.CropRandomizer(
                    input_shape=x.input_shape,
                    crop_height=x.crop_height,
                    crop_width=x.crop_width,
                    num_crops=x.num_crops,
                    pos_enc=x.pos_enc
                )
            )

        # create diffusion model
        obs_feature_dim = obs_encoder.output_shape()[0]
        input_dim = action_dim if obs_as_cond else (obs_feature_dim + action_dim)
        output_dim = input_dim
        cond_dim = obs_feature_dim if obs_as_cond else 0

        model = TransformerForDiffusion(
            input_dim=input_dim,
            output_dim=output_dim,
            horizon=horizon,
            n_obs_steps=n_obs_steps,
            cond_dim=cond_dim,
            n_layer=n_layer,
            n_head=n_head,
            n_emb=n_emb,
            p_drop_emb=p_drop_emb,
            p_drop_attn=p_drop_attn,
            causal_attn=causal_attn,
            time_as_cond=time_as_cond,
            obs_as_cond=obs_as_cond,
            n_cond_layers=n_cond_layers
        )

        self.obs_encoder = obs_encoder
        self.model = model
        self.noise_scheduler = noise_scheduler
        self.mask_generator = LowdimMaskGenerator(
            action_dim=action_dim,
            obs_dim=0 if (obs_as_cond) else obs_feature_dim,
            max_n_obs_steps=n_obs_steps,
            fix_obs_steps=True,
            action_visible=False
        )
        self.normalizer = LinearNormalizer()
        self.horizon = horizon
        self.obs_feature_dim = obs_feature_dim
        self.action_dim = action_dim
        self.n_action_steps = n_action_steps
        self.n_obs_steps = n_obs_steps
        self.obs_as_cond = obs_as_cond
        self.pred_action_steps_only = pred_action_steps_only
        self.kwargs = kwargs

        if num_inference_steps is None:
            num_inference_steps = noise_scheduler.config.num_train_timesteps
        self.num_inference_steps = num_inference_steps
    
    # ========= inference  ============
    def conditional_sample(self, 
            condition_data, condition_mask,
            cond=None, generator=None,
            # keyword arguments to scheduler.step
            **kwargs
            ):
        model = self.model
        scheduler = self.noise_scheduler

        trajectory = torch.randn(
            size=condition_data.shape, 
            dtype=condition_data.dtype,
            device=condition_data.device,
            generator=generator)
    
        # set step values
        scheduler.set_timesteps(self.num_inference_steps)

        for t in scheduler.timesteps:
            # 1. apply conditioning
            trajectory[condition_mask] = condition_data[condition_mask]

            # 2. predict model output
            model_output = model(trajectory, t, cond)

            # 3. compute previous image: x_t -> x_t-1
            trajectory = scheduler.step(
                model_output, t, trajectory, 
                generator=generator,
                **kwargs
                ).prev_sample
        
        # finally make sure conditioning is enforced
        trajectory[condition_mask] = condition_data[condition_mask]        

        return trajectory


    def predict_action(self, obs_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        """
        obs_dict: must include "obs" key
        result: must include "action" key
        """
        assert 'past_action' not in obs_dict # not implemented yet
        # normalize input
        nobs = self.normalizer.normalize(obs_dict)
        value = next(iter(nobs.values()))
        B, To = value.shape[:2]
        T = self.horizon
        Da = self.action_dim
        Do = self.obs_feature_dim
        To = self.n_obs_steps

        # build input
        device = self.device
        dtype = self.dtype

        # handle different ways of passing observation
        cond = None
        cond_data = None
        cond_mask = None
        if self.obs_as_cond:
            this_nobs = dict_apply(nobs, lambda x: x[:,:To,...].reshape(-1,*x.shape[2:]))
            nobs_features = self.obs_encoder(this_nobs)
            # reshape back to B, To, Do
            cond = nobs_features.reshape(B, To, -1)
            shape = (B, T, Da)
            if self.pred_action_steps_only:
                shape = (B, self.n_action_steps, Da)
            cond_data = torch.zeros(size=shape, device=device, dtype=dtype)
            cond_mask = torch.zeros_like(cond_data, dtype=torch.bool)
        else:
            # condition through impainting
            this_nobs = dict_apply(nobs, lambda x: x[:,:To,...].reshape(-1,*x.shape[2:]))
            nobs_features = self.obs_encoder(this_nobs)
            # reshape back to B, To, Do
            nobs_features = nobs_features.reshape(B, To, -1)
            shape = (B, T, Da+Do)
            cond_data = torch.zeros(size=shape, device=device, dtype=dtype)
            cond_mask = torch.zeros_like(cond_data, dtype=torch.bool)
            cond_data[:,:To,Da:] = nobs_features
            cond_mask[:,:To,Da:] = True

        # run sampling
        nsample = self.conditional_sample(
            cond_data, 
            cond_mask,
            cond=cond,
            **self.kwargs)
        
        # unnormalize prediction
        naction_pred = nsample[...,:Da]
        action_pred = self.normalizer['action'].unnormalize(naction_pred)

        # get action
        if self.pred_action_steps_only:
            action = action_pred
        else:
            start = To - 1
            end = start + self.n_action_steps
            action = action_pred[:,start:end]
        
        result = {
            'action': action,
            'action_pred': action_pred
        }
        return result

    # ========= training  ============
    def set_normalizer(self, normalizer: LinearNormalizer):
        self.normalizer.load_state_dict(normalizer.state_dict())

    def get_optimizer(
            self, 
            transformer_weight_decay: float, 
            obs_encoder_weight_decay: float,
            learning_rate: float, 
            betas: Tuple[float, float]
        ) -> torch.optim.Optimizer:
        optim_groups = self.model.get_optim_groups(
            weight_decay=transformer_weight_decay)
        optim_groups.append({
            "params": self.obs_encoder.parameters(),
            "weight_decay": obs_encoder_weight_decay
        })
        optimizer = torch.optim.AdamW(
            optim_groups, lr=learning_rate, betas=betas
        )
        return optimizer

    def compute_loss(self, batch):
        # normalize input
        assert 'valid_mask' not in batch
        nobs = self.normalizer.normalize(batch['obs'])
        nactions = self.normalizer['action'].normalize(batch['action'])
        batch_size = nactions.shape[0]
        horizon = nactions.shape[1]
        To = self.n_obs_steps

        # handle different ways of passing observation
        cond = None
        trajectory = nactions
        if self.obs_as_cond:
            # reshape B, T, ... to B*T
            this_nobs = dict_apply(nobs, 
                lambda x: x[:,:To,...].reshape(-1,*x.shape[2:]))
            nobs_features = self.obs_encoder(this_nobs)
            # reshape back to B, T, Do
            cond = nobs_features.reshape(batch_size, To, -1)
            if self.pred_action_steps_only:
                start = To - 1
                end = start + self.n_action_steps
                trajectory = nactions[:,start:end]
        else:
            # reshape B, T, ... to B*T
            this_nobs = dict_apply(nobs, lambda x: x.reshape(-1, *x.shape[2:]))
            nobs_features = self.obs_encoder(this_nobs)
            # reshape back to B, T, Do
            nobs_features = nobs_features.reshape(batch_size, horizon, -1)
            trajectory = torch.cat([nactions, nobs_features], dim=-1).detach()

        # generate impainting mask
        if self.pred_action_steps_only:
            condition_mask = torch.zeros_like(trajectory, dtype=torch.bool)
        else:
            condition_mask = self.mask_generator(trajectory.shape)

        # Sample noise that we'll add to the images
        noise = torch.randn(trajectory.shape, device=trajectory.device)
        bsz = trajectory.shape[0]
        # Sample a random timestep for each image
        timesteps = torch.randint(
            0, self.noise_scheduler.config.num_train_timesteps, 
            (bsz,), device=trajectory.device
        ).long()
        # Add noise to the clean images according to the noise magnitude at each timestep
        # (this is the forward diffusion process)
        noisy_trajectory = self.noise_scheduler.add_noise(
            trajectory, noise, timesteps)

        # compute loss mask
        loss_mask = ~condition_mask

        # apply conditioning
        noisy_trajectory[condition_mask] = trajectory[condition_mask]
        
        # Predict the noise residual
        pred = self.model(noisy_trajectory, timesteps, cond)

        pred_type = self.noise_scheduler.config.prediction_type 
        if pred_type == 'epsilon':
            target = noise
        elif pred_type == 'sample':
            target = trajectory
        else:
            raise ValueError(f"Unsupported prediction type {pred_type}")

        loss = F.mse_loss(pred, target, reduction='none')
        loss = loss * loss_mask.type(loss.dtype)
        loss = reduce(loss, 'b ... -> b (...)', 'mean')
        loss = loss.mean()
        return loss