File size: 5,939 Bytes
c1f1d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from typing import Dict, List, Union
import numbers
from queue import (Empty, Full)
from multiprocessing.managers import SharedMemoryManager
import numpy as np
from equi_diffpo.shared_memory.shared_memory_util import ArraySpec, SharedAtomicCounter
from equi_diffpo.shared_memory.shared_ndarray import SharedNDArray


class SharedMemoryQueue:
    """
    A Lock-Free FIFO Shared Memory Data Structure.
    Stores a sequence of dict of numpy arrays.
    """

    def __init__(self,
            shm_manager: SharedMemoryManager,
            array_specs: List[ArraySpec],
            buffer_size: int
        ):

        # create atomic counter
        write_counter = SharedAtomicCounter(shm_manager)
        read_counter = SharedAtomicCounter(shm_manager)
        
        # allocate shared memory
        shared_arrays = dict()
        for spec in array_specs:
            key = spec.name
            assert key not in shared_arrays
            array = SharedNDArray.create_from_shape(
                mem_mgr=shm_manager,
                shape=(buffer_size,) + tuple(spec.shape),
                dtype=spec.dtype)
            shared_arrays[key] = array
        
        self.buffer_size = buffer_size
        self.array_specs = array_specs
        self.write_counter = write_counter
        self.read_counter = read_counter
        self.shared_arrays = shared_arrays
    
    @classmethod
    def create_from_examples(cls, 
            shm_manager: SharedMemoryManager,
            examples: Dict[str, Union[np.ndarray, numbers.Number]], 
            buffer_size: int
            ):
        specs = list()
        for key, value in examples.items():
            shape = None
            dtype = None
            if isinstance(value, np.ndarray):
                shape = value.shape
                dtype = value.dtype
                assert dtype != np.dtype('O')
            elif isinstance(value, numbers.Number):
                shape = tuple()
                dtype = np.dtype(type(value))
            else:
                raise TypeError(f'Unsupported type {type(value)}')

            spec = ArraySpec(
                name=key,
                shape=shape,
                dtype=dtype
            )
            specs.append(spec)

        obj = cls(
            shm_manager=shm_manager,
            array_specs=specs,
            buffer_size=buffer_size
            )
        return obj
    
    def qsize(self):
        read_count = self.read_counter.load()
        write_count = self.write_counter.load()
        n_data = write_count - read_count
        return n_data
    
    def empty(self):
        n_data = self.qsize()
        return n_data <= 0
    
    def clear(self):
        self.read_counter.store(self.write_counter.load())
    
    def put(self, data: Dict[str, Union[np.ndarray, numbers.Number]]):
        read_count = self.read_counter.load()
        write_count = self.write_counter.load()
        n_data = write_count - read_count
        if n_data >= self.buffer_size:
            raise Full()
        
        next_idx = write_count % self.buffer_size

        # write to shared memory
        for key, value in data.items():
            arr: np.ndarray
            arr = self.shared_arrays[key].get()
            if isinstance(value, np.ndarray):
                arr[next_idx] = value
            else:
                arr[next_idx] = np.array(value, dtype=arr.dtype)

        # update idx
        self.write_counter.add(1)
    
    def get(self, out=None) -> Dict[str, np.ndarray]:
        write_count = self.write_counter.load()
        read_count = self.read_counter.load()
        n_data = write_count - read_count
        if n_data <= 0:
            raise Empty()

        if out is None:
            out = self._allocate_empty()

        next_idx = read_count % self.buffer_size
        for key, value in self.shared_arrays.items():
            arr = value.get()
            np.copyto(out[key], arr[next_idx])
        
        # update idx
        self.read_counter.add(1)
        return out

    def get_k(self, k, out=None) -> Dict[str, np.ndarray]:
        write_count = self.write_counter.load()
        read_count = self.read_counter.load()
        n_data = write_count - read_count
        if n_data <= 0:
            raise Empty()
        assert k <= n_data

        out = self._get_k_impl(k, read_count, out=out)
        self.read_counter.add(k)
        return out

    def get_all(self, out=None) -> Dict[str, np.ndarray]:
        write_count = self.write_counter.load()
        read_count = self.read_counter.load()
        n_data = write_count - read_count
        if n_data <= 0:
            raise Empty()

        out = self._get_k_impl(n_data, read_count, out=out)
        self.read_counter.add(n_data)
        return out
    
    def _get_k_impl(self, k, read_count, out=None) -> Dict[str, np.ndarray]:
        if out is None:
            out = self._allocate_empty(k)

        curr_idx = read_count % self.buffer_size
        for key, value in self.shared_arrays.items():
            arr = value.get()
            target = out[key]

            start = curr_idx
            end = min(start + k, self.buffer_size)
            target_start = 0
            target_end = (end - start)
            target[target_start: target_end] = arr[start:end]

            remainder = k - (end - start)
            if remainder > 0:
                # wrap around
                start = 0
                end = start + remainder
                target_start = target_end
                target_end = k
                target[target_start: target_end] = arr[start:end]

        return out
    
    def _allocate_empty(self, k=None):
        result = dict()
        for spec in self.array_specs:
            shape = spec.shape
            if k is not None:
                shape = (k,) + shape
            result[spec.name] = np.empty(
                shape=shape, dtype=spec.dtype)
        return result