File size: 12,234 Bytes
c1f1d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
if __name__ == "__main__":
import sys
import os
import pathlib
ROOT_DIR = str(pathlib.Path(__file__).parent.parent.parent)
sys.path.append(ROOT_DIR)
os.chdir(ROOT_DIR)
import os
import hydra
import torch
from omegaconf import OmegaConf
import pathlib
from torch.utils.data import DataLoader
import copy
import random
import wandb
import tqdm
import numpy as np
import shutil
from equi_diffpo.workspace.base_workspace import BaseWorkspace
from equi_diffpo.policy.base_image_policy import BaseImagePolicy
from equi_diffpo.dataset.base_dataset import BaseImageDataset
from equi_diffpo.env_runner.base_image_runner import BaseImageRunner
from equi_diffpo.common.checkpoint_util import TopKCheckpointManager
from equi_diffpo.common.json_logger import JsonLogger
from equi_diffpo.common.pytorch_util import dict_apply, optimizer_to
from equi_diffpo.model.diffusion.ema_model import EMAModel
from equi_diffpo.model.common.lr_scheduler import get_scheduler
OmegaConf.register_new_resolver("eval", eval, replace=True)
class TrainEquiWorkspace(BaseWorkspace):
include_keys = ['global_step', 'epoch']
def __init__(self, cfg: OmegaConf, output_dir=None):
super().__init__(cfg, output_dir=output_dir)
# set seed
seed = cfg.training.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# configure model
self.model: BaseImagePolicy = hydra.utils.instantiate(cfg.policy)
self.ema_model: BaseImagePolicy = None
if cfg.training.use_ema:
self.ema_model = copy.deepcopy(self.model)
# configure training state
self.optimizer = self.model.get_optimizer(**cfg.optimizer)
total_params = 0
for param_group in self.optimizer.param_groups:
for param in param_group['params']:
total_params += param.numel()
assert total_params == sum(p.numel() for p in self.model.parameters() if p.requires_grad)
# configure training state
self.global_step = 0
self.epoch = 0
def run(self):
cfg = copy.deepcopy(self.cfg)
# resume training
if cfg.training.resume:
lastest_ckpt_path = self.get_checkpoint_path()
if lastest_ckpt_path.is_file():
print(f"Resuming from checkpoint {lastest_ckpt_path}")
self.load_checkpoint(path=lastest_ckpt_path)
self.epoch += 1
self.global_step += 1
# configure dataset
dataset: BaseImageDataset
dataset = hydra.utils.instantiate(cfg.task.dataset)
assert isinstance(dataset, BaseImageDataset)
train_dataloader = DataLoader(dataset, **cfg.dataloader)
normalizer = dataset.get_normalizer()
# configure validation dataset
val_dataset = dataset.get_validation_dataset()
val_dataloader = DataLoader(val_dataset, **cfg.val_dataloader)
self.model.set_normalizer(normalizer)
if cfg.training.use_ema:
self.ema_model.set_normalizer(normalizer)
# configure lr scheduler
lr_scheduler = get_scheduler(
cfg.training.lr_scheduler,
optimizer=self.optimizer,
num_warmup_steps=cfg.training.lr_warmup_steps,
num_training_steps=(
len(train_dataloader) * cfg.training.num_epochs) \
// cfg.training.gradient_accumulate_every,
# pytorch assumes stepping LRScheduler every epoch
# however huggingface diffusers steps it every batch
last_epoch=self.global_step-1
)
# configure ema
ema: EMAModel = None
if cfg.training.use_ema:
ema = hydra.utils.instantiate(
cfg.ema,
model=self.ema_model)
# configure env
env_runner: BaseImageRunner
env_runner = hydra.utils.instantiate(
cfg.task.env_runner,
output_dir=self.output_dir)
assert isinstance(env_runner, BaseImageRunner)
# configure logging
wandb_run = wandb.init(
dir=str(self.output_dir),
config=OmegaConf.to_container(cfg, resolve=True),
**cfg.logging
)
wandb.config.update(
{
"output_dir": self.output_dir,
}
)
# configure checkpoint
topk_manager = TopKCheckpointManager(
save_dir=os.path.join(self.output_dir, 'checkpoints'),
**cfg.checkpoint.topk
)
# device transfer
device = torch.device(cfg.training.device)
self.model.to(device)
if self.ema_model is not None:
self.ema_model.to(device)
optimizer_to(self.optimizer, device)
# save batch for sampling
train_sampling_batch = None
if cfg.training.debug:
cfg.training.num_epochs = 2
cfg.training.max_train_steps = 3
cfg.training.max_val_steps = 3
cfg.training.rollout_every = 1
cfg.training.checkpoint_every = 1
cfg.training.val_every = 1
cfg.training.sample_every = 1
# training loop
log_path = os.path.join(self.output_dir, 'logs.json.txt')
with JsonLogger(log_path) as json_logger:
while self.epoch < cfg.training.num_epochs:
step_log = dict()
# ========= train for this epoch ==========
train_losses = list()
with tqdm.tqdm(train_dataloader, desc=f"Training epoch {self.epoch}",
leave=False, mininterval=cfg.training.tqdm_interval_sec) as tepoch:
for batch_idx, batch in enumerate(tepoch):
# device transfer
batch = dict_apply(batch, lambda x: x.to(device, non_blocking=True))
if train_sampling_batch is None:
train_sampling_batch = batch
# compute loss
raw_loss = self.model.compute_loss(batch)
loss = raw_loss / cfg.training.gradient_accumulate_every
loss.backward()
# step optimizer
if self.global_step % cfg.training.gradient_accumulate_every == 0:
self.optimizer.step()
self.optimizer.zero_grad()
lr_scheduler.step()
# update ema
if cfg.training.use_ema:
ema.step(self.model)
# logging
raw_loss_cpu = raw_loss.item()
tepoch.set_postfix(loss=raw_loss_cpu, refresh=False)
train_losses.append(raw_loss_cpu)
step_log = {
'train_loss': raw_loss_cpu,
'global_step': self.global_step,
'epoch': self.epoch,
'lr': lr_scheduler.get_last_lr()[0]
}
is_last_batch = (batch_idx == (len(train_dataloader)-1))
if not is_last_batch:
# log of last step is combined with validation and rollout
# wandb_run.log(step_log, step=self.global_step)
# json_logger.log(step_log)
self.global_step += 1
if (cfg.training.max_train_steps is not None) \
and batch_idx >= (cfg.training.max_train_steps-1):
break
# at the end of each epoch
# replace train_loss with epoch average
train_loss = np.mean(train_losses)
step_log['train_loss'] = train_loss
# ========= eval for this epoch ==========
policy = self.model
if cfg.training.use_ema:
policy = self.ema_model
policy.eval()
# run rollout
if (self.epoch % cfg.training.rollout_every) == 0:
runner_log = env_runner.run(policy)
# log all
step_log.update(runner_log)
# run validation
if (self.epoch % cfg.training.val_every) == 0:
with torch.no_grad():
val_losses = list()
with tqdm.tqdm(val_dataloader, desc=f"Validation epoch {self.epoch}",
leave=False, mininterval=cfg.training.tqdm_interval_sec) as tepoch:
for batch_idx, batch in enumerate(tepoch):
batch = dict_apply(batch, lambda x: x.to(device, non_blocking=True))
loss = self.model.compute_loss(batch)
val_losses.append(loss)
if (cfg.training.max_val_steps is not None) \
and batch_idx >= (cfg.training.max_val_steps-1):
break
if len(val_losses) > 0:
val_loss = torch.mean(torch.tensor(val_losses)).item()
# log epoch average validation loss
step_log['val_loss'] = val_loss
# run diffusion sampling on a training batch
if (self.epoch % cfg.training.sample_every) == 0:
with torch.no_grad():
# sample trajectory from training set, and evaluate difference
batch = dict_apply(train_sampling_batch, lambda x: x.to(device, non_blocking=True))
obs_dict = batch['obs']
gt_action = batch['action']
result = policy.predict_action(obs_dict)
pred_action = result['action_pred']
mse = torch.nn.functional.mse_loss(pred_action, gt_action)
step_log['train_action_mse_error'] = mse.item()
del batch
del obs_dict
del gt_action
del result
del pred_action
del mse
# checkpoint
if (self.epoch % cfg.training.checkpoint_every) == 0:
# checkpointing
if cfg.checkpoint.save_last_ckpt:
self.save_checkpoint()
if cfg.checkpoint.save_last_snapshot:
self.save_snapshot()
# sanitize metric names
metric_dict = dict()
for key, value in step_log.items():
new_key = key.replace('/', '_')
metric_dict[new_key] = value
# We can't copy the last checkpoint here
# since save_checkpoint uses threads.
# therefore at this point the file might have been empty!
topk_ckpt_path = topk_manager.get_ckpt_path(metric_dict)
if topk_ckpt_path is not None:
self.save_checkpoint(path=topk_ckpt_path)
# ========= eval end for this epoch ==========
policy.train()
# end of epoch
# log of last step is combined with validation and rollout
wandb_run.log(step_log, step=self.global_step)
json_logger.log(step_log)
self.global_step += 1
self.epoch += 1
@hydra.main(
version_base=None,
config_path=str(pathlib.Path(__file__).parent.parent.joinpath("config")),
config_name=pathlib.Path(__file__).stem)
def main(cfg):
workspace = TrainEquiWorkspace(cfg)
workspace.run()
if __name__ == "__main__":
main()
|