File size: 12,234 Bytes
c1f1d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
if __name__ == "__main__":
    import sys
    import os
    import pathlib

    ROOT_DIR = str(pathlib.Path(__file__).parent.parent.parent)
    sys.path.append(ROOT_DIR)
    os.chdir(ROOT_DIR)

import os
import hydra
import torch
from omegaconf import OmegaConf
import pathlib
from torch.utils.data import DataLoader
import copy
import random
import wandb
import tqdm
import numpy as np
import shutil
from equi_diffpo.workspace.base_workspace import BaseWorkspace
from equi_diffpo.policy.base_image_policy import BaseImagePolicy
from equi_diffpo.dataset.base_dataset import BaseImageDataset
from equi_diffpo.env_runner.base_image_runner import BaseImageRunner
from equi_diffpo.common.checkpoint_util import TopKCheckpointManager
from equi_diffpo.common.json_logger import JsonLogger
from equi_diffpo.common.pytorch_util import dict_apply, optimizer_to
from equi_diffpo.model.diffusion.ema_model import EMAModel
from equi_diffpo.model.common.lr_scheduler import get_scheduler

OmegaConf.register_new_resolver("eval", eval, replace=True)

class TrainEquiWorkspace(BaseWorkspace):
    include_keys = ['global_step', 'epoch']

    def __init__(self, cfg: OmegaConf, output_dir=None):
        super().__init__(cfg, output_dir=output_dir)

        # set seed
        seed = cfg.training.seed
        torch.manual_seed(seed)
        np.random.seed(seed)
        random.seed(seed)

        # configure model
        self.model: BaseImagePolicy = hydra.utils.instantiate(cfg.policy)

        self.ema_model: BaseImagePolicy = None
        if cfg.training.use_ema:
            self.ema_model = copy.deepcopy(self.model)

        # configure training state
        self.optimizer = self.model.get_optimizer(**cfg.optimizer)
        total_params = 0
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                total_params += param.numel()
        assert total_params == sum(p.numel() for p in self.model.parameters() if p.requires_grad)
        # configure training state
        self.global_step = 0
        self.epoch = 0

    def run(self):
        cfg = copy.deepcopy(self.cfg)

        # resume training
        if cfg.training.resume:
            lastest_ckpt_path = self.get_checkpoint_path()
            if lastest_ckpt_path.is_file():
                print(f"Resuming from checkpoint {lastest_ckpt_path}")
                self.load_checkpoint(path=lastest_ckpt_path)
                self.epoch += 1
                self.global_step += 1

        # configure dataset
        dataset: BaseImageDataset
        dataset = hydra.utils.instantiate(cfg.task.dataset)
        assert isinstance(dataset, BaseImageDataset)
        train_dataloader = DataLoader(dataset, **cfg.dataloader)
        normalizer = dataset.get_normalizer()

        # configure validation dataset
        val_dataset = dataset.get_validation_dataset()
        val_dataloader = DataLoader(val_dataset, **cfg.val_dataloader)

        self.model.set_normalizer(normalizer)
        if cfg.training.use_ema:
            self.ema_model.set_normalizer(normalizer)

        # configure lr scheduler
        lr_scheduler = get_scheduler(
            cfg.training.lr_scheduler,
            optimizer=self.optimizer,
            num_warmup_steps=cfg.training.lr_warmup_steps,
            num_training_steps=(
                len(train_dataloader) * cfg.training.num_epochs) \
                    // cfg.training.gradient_accumulate_every,
            # pytorch assumes stepping LRScheduler every epoch
            # however huggingface diffusers steps it every batch
            last_epoch=self.global_step-1
        )

        # configure ema
        ema: EMAModel = None
        if cfg.training.use_ema:
            ema = hydra.utils.instantiate(
                cfg.ema,
                model=self.ema_model)

        # configure env
        env_runner: BaseImageRunner
        env_runner = hydra.utils.instantiate(
            cfg.task.env_runner,
            output_dir=self.output_dir)
        assert isinstance(env_runner, BaseImageRunner)

        # configure logging
        wandb_run = wandb.init(
            dir=str(self.output_dir),
            config=OmegaConf.to_container(cfg, resolve=True),
            **cfg.logging
        )
        wandb.config.update(
            {
                "output_dir": self.output_dir,
            }
        )

        # configure checkpoint
        topk_manager = TopKCheckpointManager(
            save_dir=os.path.join(self.output_dir, 'checkpoints'),
            **cfg.checkpoint.topk
        )

        # device transfer
        device = torch.device(cfg.training.device)
        self.model.to(device)
        if self.ema_model is not None:
            self.ema_model.to(device)
        optimizer_to(self.optimizer, device)
        
        # save batch for sampling
        train_sampling_batch = None

        if cfg.training.debug:
            cfg.training.num_epochs = 2
            cfg.training.max_train_steps = 3
            cfg.training.max_val_steps = 3
            cfg.training.rollout_every = 1
            cfg.training.checkpoint_every = 1
            cfg.training.val_every = 1
            cfg.training.sample_every = 1

        # training loop
        log_path = os.path.join(self.output_dir, 'logs.json.txt')
        with JsonLogger(log_path) as json_logger:
            while self.epoch < cfg.training.num_epochs:
                step_log = dict()
                # ========= train for this epoch ==========
                train_losses = list()
                with tqdm.tqdm(train_dataloader, desc=f"Training epoch {self.epoch}", 
                        leave=False, mininterval=cfg.training.tqdm_interval_sec) as tepoch:
                    for batch_idx, batch in enumerate(tepoch):
                        # device transfer
                        batch = dict_apply(batch, lambda x: x.to(device, non_blocking=True))
                        if train_sampling_batch is None:
                            train_sampling_batch = batch

                        # compute loss
                        raw_loss = self.model.compute_loss(batch)
                        loss = raw_loss / cfg.training.gradient_accumulate_every
                        loss.backward()

                        # step optimizer
                        if self.global_step % cfg.training.gradient_accumulate_every == 0:
                            self.optimizer.step()
                            self.optimizer.zero_grad()
                            lr_scheduler.step()
                        
                        # update ema
                        if cfg.training.use_ema:
                            ema.step(self.model)

                        # logging
                        raw_loss_cpu = raw_loss.item()
                        tepoch.set_postfix(loss=raw_loss_cpu, refresh=False)
                        train_losses.append(raw_loss_cpu)
                        step_log = {
                            'train_loss': raw_loss_cpu,
                            'global_step': self.global_step,
                            'epoch': self.epoch,
                            'lr': lr_scheduler.get_last_lr()[0]
                        }

                        is_last_batch = (batch_idx == (len(train_dataloader)-1))
                        if not is_last_batch:
                            # log of last step is combined with validation and rollout
                            # wandb_run.log(step_log, step=self.global_step)
                            # json_logger.log(step_log)
                            self.global_step += 1

                        if (cfg.training.max_train_steps is not None) \
                            and batch_idx >= (cfg.training.max_train_steps-1):
                            break

                # at the end of each epoch
                # replace train_loss with epoch average
                train_loss = np.mean(train_losses)
                step_log['train_loss'] = train_loss

                # ========= eval for this epoch ==========
                policy = self.model
                if cfg.training.use_ema:
                    policy = self.ema_model
                policy.eval()

                # run rollout
                if (self.epoch % cfg.training.rollout_every) == 0:
                    runner_log = env_runner.run(policy)
                    # log all
                    step_log.update(runner_log)

                # run validation
                if (self.epoch % cfg.training.val_every) == 0:
                    with torch.no_grad():
                        val_losses = list()
                        with tqdm.tqdm(val_dataloader, desc=f"Validation epoch {self.epoch}", 
                                leave=False, mininterval=cfg.training.tqdm_interval_sec) as tepoch:
                            for batch_idx, batch in enumerate(tepoch):
                                batch = dict_apply(batch, lambda x: x.to(device, non_blocking=True))
                                loss = self.model.compute_loss(batch)
                                val_losses.append(loss)
                                if (cfg.training.max_val_steps is not None) \
                                    and batch_idx >= (cfg.training.max_val_steps-1):
                                    break
                        if len(val_losses) > 0:
                            val_loss = torch.mean(torch.tensor(val_losses)).item()
                            # log epoch average validation loss
                            step_log['val_loss'] = val_loss

                # run diffusion sampling on a training batch
                if (self.epoch % cfg.training.sample_every) == 0:
                    with torch.no_grad():
                        # sample trajectory from training set, and evaluate difference
                        batch = dict_apply(train_sampling_batch, lambda x: x.to(device, non_blocking=True))
                        obs_dict = batch['obs']
                        gt_action = batch['action']
                        
                        result = policy.predict_action(obs_dict)
                        pred_action = result['action_pred']
                        mse = torch.nn.functional.mse_loss(pred_action, gt_action)
                        step_log['train_action_mse_error'] = mse.item()
                        del batch
                        del obs_dict
                        del gt_action
                        del result
                        del pred_action
                        del mse
                
                # checkpoint
                if (self.epoch % cfg.training.checkpoint_every) == 0:
                    # checkpointing
                    if cfg.checkpoint.save_last_ckpt:
                        self.save_checkpoint()
                    if cfg.checkpoint.save_last_snapshot:
                        self.save_snapshot()

                    # sanitize metric names
                    metric_dict = dict()
                    for key, value in step_log.items():
                        new_key = key.replace('/', '_')
                        metric_dict[new_key] = value
                    
                    # We can't copy the last checkpoint here
                    # since save_checkpoint uses threads.
                    # therefore at this point the file might have been empty!
                    topk_ckpt_path = topk_manager.get_ckpt_path(metric_dict)

                    if topk_ckpt_path is not None:
                        self.save_checkpoint(path=topk_ckpt_path)
                # ========= eval end for this epoch ==========
                policy.train()

                # end of epoch
                # log of last step is combined with validation and rollout
                wandb_run.log(step_log, step=self.global_step)
                json_logger.log(step_log)
                self.global_step += 1
                self.epoch += 1

@hydra.main(
    version_base=None,
    config_path=str(pathlib.Path(__file__).parent.parent.joinpath("config")), 
    config_name=pathlib.Path(__file__).stem)
def main(cfg):
    workspace = TrainEquiWorkspace(cfg)
    workspace.run()

if __name__ == "__main__":
    main()