Equidiff / equidiff /equi_diffpo /workspace /test_equi_workspace.py
Lillianwei's picture
mimicgen
c1f1d32
if __name__ == "__main__":
import sys
import os
import pathlib
ROOT_DIR = str(pathlib.Path(__file__).parent.parent.parent)
sys.path.append(ROOT_DIR)
os.chdir(ROOT_DIR)
import os
import hydra
import torch
from omegaconf import OmegaConf
import pathlib
from pathlib import Path
from torch.utils.data import DataLoader
import copy
import random
import wandb
import tqdm
import numpy as np
import shutil
import json
from equi_diffpo.workspace.base_workspace import BaseWorkspace
from equi_diffpo.policy.base_image_policy import BaseImagePolicy
from equi_diffpo.dataset.base_dataset import BaseImageDataset
from equi_diffpo.env_runner.base_image_runner import BaseImageRunner
from equi_diffpo.common.checkpoint_util import TopKCheckpointManager
from equi_diffpo.common.json_logger import JsonLogger
from equi_diffpo.common.pytorch_util import dict_apply, optimizer_to
from equi_diffpo.model.diffusion.ema_model import EMAModel
from equi_diffpo.model.common.lr_scheduler import get_scheduler
OmegaConf.register_new_resolver("eval", eval, replace=True)
class TestEquiWorkspace(BaseWorkspace):
include_keys = ['global_step', 'epoch']
def __init__(self, cfg: OmegaConf, output_dir=None):
super().__init__(cfg, output_dir=output_dir)
# set seed
seed = cfg.training.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# configure model
self.model: BaseImagePolicy = hydra.utils.instantiate(cfg.policy)
self.ema_model: BaseImagePolicy = None
if cfg.training.use_ema:
self.ema_model = copy.deepcopy(self.model)
# configure training state
self.optimizer = self.model.get_optimizer(**cfg.optimizer)
total_params = 0
for param_group in self.optimizer.param_groups:
for param in param_group['params']:
total_params += param.numel()
assert total_params == sum(p.numel() for p in self.model.parameters() if p.requires_grad)
# configure training state
self.global_step = 0
self.epoch = 0
def run(self):
cfg = copy.deepcopy(self.cfg)
# resume training
ckpt_path = Path(cfg.training.ckpt_path)
if ckpt_path.is_file():
print(f"Resuming from checkpoint {ckpt_path}")
self.load_checkpoint(path=ckpt_path)
# configure dataset
dataset: BaseImageDataset
# print(cfg.task.dataset)
dataset = hydra.utils.instantiate(cfg.task.dataset)
assert isinstance(dataset, BaseImageDataset)
normalizer = dataset.get_normalizer()
self.model.set_normalizer(normalizer)
if cfg.training.use_ema:
self.ema_model.set_normalizer(normalizer)
# configure env
env_runner: BaseImageRunner
env_runner = hydra.utils.instantiate(
cfg.task.env_runner,
output_dir=self.output_dir)
assert isinstance(env_runner, BaseImageRunner)
# configure logging
# wandb_run = wandb.init(
# dir=str(self.output_dir),
# config=OmegaConf.to_container(cfg, resolve=True),
# **cfg.logging
# )
# wandb.config.update(
# {
# "output_dir": self.output_dir,
# }
# )
# device transfer
device = torch.device(cfg.training.device)
self.model.to(device)
if self.ema_model is not None:
self.ema_model.to(device)
optimizer_to(self.optimizer, device)
if cfg.training.debug:
cfg.training.num_epochs = 2
cfg.training.max_train_steps = 3
cfg.training.max_val_steps = 3
cfg.training.rollout_every = 1
cfg.training.checkpoint_every = 1
cfg.training.val_every = 1
cfg.training.sample_every = 1
cfg.training.num_epochs=1
# training loop
log_path = os.path.join(self.output_dir, 'logs.json.txt')
with JsonLogger(log_path) as json_logger:
step_log = dict()
# ========= eval for this epoch ==========
policy = self.model
if cfg.training.use_ema:
policy = self.ema_model
policy.eval()
# run rollout
runner_log = env_runner.run(policy)
# log all
step_log.update(runner_log)
# wandb_run.log(step_log, step=self.global_step)
json_logger.log(cfg)
json_logger.log(step_log)
print(cfg.policy.n_action_steps)
print(step_log['test/mean_score'])
with open(cfg.log_txt_path, 'a') as f:
log_data = {
"run_name": cfg.run_name,
"task": cfg.task_name,
"diversity": cfg.diversity,
"ckpt_path": cfg.ckpt_path,
"demo": cfg.n_demo,
"n_action_steps": cfg.policy.n_action_steps,
"horizon": cfg.horizon,
"test/mean_score": step_log['test/mean_score']
}
f.write(json.dumps(log_data) + '\n')
@hydra.main(
version_base=None,
config_path=str(pathlib.Path(__file__).parent.parent.joinpath("config")),
config_name=pathlib.Path(__file__).stem)
def main(cfg):
workspace = TestEquiWorkspace(cfg)
workspace.run()
if __name__ == "__main__":
main()