--- library_name: transformers license: other license_name: lfm1.0 license_link: LICENSE language: - en pipeline_tag: image-text-to-text tags: - liquid - lfm2 - lfm2-vl - edge ---
Liquid AI
# LFM2‑VL LFM2‑VL is [Liquid AI](https://www.liquid.ai/)'s first series of multimodal models, designed to process text and images with variable resolutions. Built on the [LFM2](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38) backbone, it is optimized for low-latency and edge AI applications. We're releasing the weights of two post-trained checkpoints with [450M](https://huggingface.co/LiquidAI/LFM2-VL-450M) (for highly constrained devices) and [1.6B](https://huggingface.co/LiquidAI/LFM2-VL-1.6B) (more capable yet still lightweight) parameters. * **2× faster inference speed** on GPUs compared to existing VLMs while maintaining competitive accuracy * **Flexible architecture** with user-tunable speed-quality tradeoffs at inference time * **Native resolution processing** up to 512×512 with intelligent patch-based handling for larger images, avoiding upscaling and distortion Find more about our vision-language model in the [LFM2-VL post](https://www.liquid.ai/blog/lfm2-vl-efficient-vision-language-models) and its language backbone in the [LFM2 blog post](https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models). ## 📄 Model details Due to their small size, **we recommend fine-tuning LFM2-VL models on narrow use cases** to maximize performance. They were trained for instruction following and lightweight agentic flows. Not intended for safety‑critical decisions. | Property | [**LFM2-VL-450M**](https://huggingface.co/LiquidAI/LFM2-VL-450M) | [**LFM2-VL-1.6B**](https://huggingface.co/LiquidAI/LFM2-VL-1.6B) | |---|---:|---:| | **Parameters (LM only)** | 350M | 1.2B | | **Vision encoder** | SigLIP2 NaFlex base (86M) | SigLIP2 NaFlex shape‑optimized (400M) | | **Backbone layers** | hybrid conv+attention | hybrid conv+attention | | **Context (text)** | 32,768 tokens | 32,768 tokens | | **Image tokens** | dynamic, user‑tunable | dynamic, user‑tunable | | **Vocab size** | 65,536 | 65,536 | | **Precision** | bfloat16 | bfloat16 | | **License** | LFM Open License v1.0 | LFM Open License v1.0 | **Supported languages:** English **Generation parameters**: We recommend the following parameters: - Text: `temperature=0.1`, `min_p=0.15`, `repetition_penalty=1.05` - Vision: `min_image_tokens=64` `max_image_tokens=256`, `do_image_splitting=True` **Chat template**: LFM2-VL uses a ChatML-like chat template as follows: ``` <|startoftext|><|im_start|>system You are a helpful multimodal assistant by Liquid AI.<|im_end|> <|im_start|>user Describe this image.<|im_end|> <|im_start|>assistant This image shows a Caenorhabditis elegans (C. elegans) nematode.<|im_end|> ``` Images are referenced with a sentinel (``), which is automatically replaced with the image tokens by the processor. You can apply it using the dedicated [`.apply_chat_template()`](https://huggingface.co/docs/transformers/en/chat_templating#applychattemplate) function from Hugging Face transformers. **Architecture** - **Hybrid backbone**: Language model tower (LFM2-1.2B or LFM2-350M) paired with SigLIP2 NaFlex vision encoders (400M shape-optimized or 86M base variant) - **Native resolution processing**: Handles images up to 512×512 pixels without upscaling and preserves non-standard aspect ratios without distortion - **Tiling strategy**: Splits large images into non-overlapping 512×512 patches and includes thumbnail encoding for global context (in 1.6B model) - **Efficient token mapping**: 2-layer MLP connector with pixel unshuffle reduces image tokens (e.g., 256×384 image → 96 tokens, 1000×3000 → 1,020 tokens) - **Inference-time flexibility**: User-tunable maximum image tokens and patch count for speed/quality tradeoff without retraining **Training approach** - Builds on the LFM2 base model with joint mid-training that fuses vision and language capabilities using a gradually adjusted text-to-image ratio - Applies joint SFT with emphasis on image understanding and vision tasks - Leverages large-scale open-source datasets combined with in-house synthetic vision data, selected for balanced task coverage - Follows a progressive training strategy: base model → joint mid-training → supervised fine-tuning ## 🏃 How to run LFM2-VL You can run LFM2-VL with Hugging Face [`transformers`](https://github.com/huggingface/transformers) v4.55 or more recent as follows: ```bash pip install -U transformers pillow ``` Here is an example of how to generate an answer with transformers in Python: ```python from transformers import AutoProcessor, AutoModelForImageTextToText from transformers.image_utils import load_image # Load model and processor model_id = "LiquidAI/LFM2-VL-1.6B" model = AutoModelForImageTextToText.from_pretrained( model_id, device_map="auto", torch_dtype="bfloat16", trust_remote_code=True ) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) # Load image and create conversation url = "https://www.ilankelman.org/stopsigns/australia.jpg" image = load_image(url) conversation = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": "What is in this image?"}, ], }, ] # Generate Answer inputs = processor.apply_chat_template( conversation, add_generation_prompt=True, return_tensors="pt", return_dict=True, tokenize=True, ).to(model.device) outputs = model.generate(**inputs, max_new_tokens=64) processor.batch_decode(outputs, skip_special_tokens=True)[0] # This image depicts a vibrant street scene in what appears to be a Chinatown or similar cultural area. The focal point is a large red stop sign with white lettering, mounted on a pole. ``` You can directly run and test the model with this [Colab notebook](https://colab.research.google.com/drive/11EMJhcVB6OTEuv--OePyGK86k-38WU3q?usp=sharing). ## 🔧 How to fine-tune We recommend fine-tuning LFM2-VL models on your use cases to maximize performance. | Notebook | Description | Link | |-----------|----------------------------------------------------------------------|------| | SFT (TRL) | Supervised Fine-Tuning (SFT) notebook with a LoRA adapter using TRL. | Colab link | ## 📈 Performance | Model | RealWorldQA | MM-IFEval | InfoVQA (Val) | OCRBench | BLINK | MMStar | MMMU (Val) | MathVista | SEEDBench_IMG | MMVet | MME | MMLU | |-------------------|-------------|-----------|---------------|----------|-------|--------|------------|-----------|---------------|-------|----------|-------| | InternVL3-2B | 65.10 | 38.49 | 66.10 | 831 | 53.10 | 61.10 | 48.70 | 57.60 | 75.00 | 67.00 | 2186.40 | 64.80 | | InternVL3-1B | 57.00 | 31.14 | 54.94 | 798 | 43.00 | 52.30 | 43.20 | 46.90 | 71.20 | 58.70 | 1912.40 | 49.80 | | SmolVLM2-2.2B | 57.50 | 19.42 | 37.75 | 725 | 42.30 | 46.00 | 41.60 | 51.50 | 71.30 | 34.90 | 1792.50 | - | | LFM2-VL-1.6B | 65.23 | 37.66 | 58.68 | 742 | 44.40 | 49.53 | 38.44 | 51.10 | 71.97 | 48.07 | 1753.04 | 50.99 | | Model | RealWorldQA | MM-IFEval | InfoVQA (Val) | OCRBench | BLINK | MMStar | MMMU (Val) | MathVista | SEEDBench_IMG | MMVet | MME | MMLU | |-------------------|-------------|-----------|---------------|----------|-------|--------|------------|-----------|---------------|-------|----------|-------| | SmolVLM2-500M | 49.90 | 11.27 | 24.64 | 609 | 40.70 | 38.20 | 34.10 | 37.50 | 62.20 | 29.90 | 1448.30 | - | | LFM2-VL-450M | 52.29 | 26.18 | 46.51 | 655 | 41.98 | 40.87 | 33.11 | 44.70 | 63.50 | 33.76 | 1239.06 | 40.16 | We obtained MM-IFEval and InfoVQA (Val) scores for InternVL 3 and SmolVLM2 models using VLMEvalKit. ## 📬 Contact If you are interested in custom solutions with edge deployment, please contact [our sales team](https://www.liquid.ai/contact).