--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA19 results: [] --- # Phi0503HMA19 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 60 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8941 | 0.09 | 10 | 0.5252 | | 0.304 | 0.18 | 20 | 0.2303 | | 0.286 | 0.27 | 30 | 0.2215 | | 0.2077 | 0.36 | 40 | 0.1718 | | 0.153 | 0.45 | 50 | 0.1491 | | 0.1408 | 0.54 | 60 | 0.1229 | | 0.1063 | 0.63 | 70 | 0.1014 | | 0.1079 | 0.73 | 80 | 0.0884 | | 0.0837 | 0.82 | 90 | 0.0777 | | 0.081 | 0.91 | 100 | 0.0710 | | 0.0749 | 1.0 | 110 | 0.0747 | | 0.0557 | 1.09 | 120 | 0.0717 | | 0.0566 | 1.18 | 130 | 0.0735 | | 0.0588 | 1.27 | 140 | 0.0713 | | 0.0535 | 1.36 | 150 | 0.0778 | | 0.0672 | 1.45 | 160 | 0.0677 | | 0.0548 | 1.54 | 170 | 0.0702 | | 0.0536 | 1.63 | 180 | 0.0633 | | 0.0474 | 1.72 | 190 | 0.0653 | | 0.0537 | 1.81 | 200 | 0.0633 | | 0.0438 | 1.9 | 210 | 0.0669 | | 0.0483 | 1.99 | 220 | 0.0669 | | 0.0233 | 2.08 | 230 | 0.0749 | | 0.0245 | 2.18 | 240 | 0.0840 | | 0.017 | 2.27 | 250 | 0.0868 | | 0.0166 | 2.36 | 260 | 0.0866 | | 0.0258 | 2.45 | 270 | 0.0823 | | 0.015 | 2.54 | 280 | 0.0805 | | 0.018 | 2.63 | 290 | 0.0811 | | 0.0227 | 2.72 | 300 | 0.0795 | | 0.0217 | 2.81 | 310 | 0.0788 | | 0.0196 | 2.9 | 320 | 0.0784 | | 0.0198 | 2.99 | 330 | 0.0782 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0