File size: 1,630 Bytes
2d171d5 d604504 2d171d5 bd1a130 d604504 2d171d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
tags:
- generated_from_trainer
model-index:
- name: airo-lora-out2
results: []
datasets:
- unalignment/spicy-3.1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# Fine-tune of Yi-34B with Spicyboros-3.1
Three epochs of fine tuning with @jondurbin's SpicyBoros-3.1 dataset. 4.65bpw should fit on a single 3090/4090, 5.0bpw, 6.0bpw, and 8.0bpw will require more than one GPU 24 GB VRAM GPU.
**Please note:** you may have to turn down repetition penalty to 1.0. The model seems to get into "thesaurus" mode sometimes without this change.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|