File size: 1,630 Bytes
2d171d5
 
 
 
 
 
d604504
 
2d171d5
 
 
 
 
 
 
bd1a130
d604504
 
 
2d171d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
tags:
- generated_from_trainer
model-index:
- name: airo-lora-out2
  results: []
datasets:
- unalignment/spicy-3.1
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

# Fine-tune of Yi-34B with Spicyboros-3.1
Three epochs of fine tuning with @jondurbin's SpicyBoros-3.1 dataset.  4.65bpw should fit on a single 3090/4090, 5.0bpw, 6.0bpw, and 8.0bpw will require more than one GPU 24 GB VRAM GPU.

**Please note:** you may have to turn down repetition penalty to 1.0. The model seems to get into "thesaurus" mode sometimes without this change.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 3

### Training results



### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1