--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - automatic-speech-recognition - sudoping01/malian-languages-dataset - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-malian-languages-minianka-dataset results: [] --- # wav2vec2-malian-languages-minianka-dataset This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the SUDOPING01/MALIAN-LANGUAGES-DATASET - MINIANKA dataset. It achieves the following results on the evaluation set: - Loss: 0.1794 - Wer: 0.1271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | No log | 0.4706 | 100 | 3.8351 | 1.0 | | No log | 0.9412 | 200 | 2.8794 | 1.0 | | No log | 1.4094 | 300 | 0.6950 | 0.5312 | | No log | 1.88 | 400 | 0.3555 | 0.3603 | | 2.6845 | 2.3482 | 500 | 0.2666 | 0.2772 | | 2.6845 | 2.8188 | 600 | 0.2253 | 0.2401 | | 2.6845 | 3.2871 | 700 | 0.2025 | 0.2246 | | 2.6845 | 3.7576 | 800 | 0.1880 | 0.1979 | | 2.6845 | 4.2259 | 900 | 0.1853 | 0.1959 | | 0.2121 | 4.6965 | 1000 | 0.1887 | 0.1909 | | 0.2121 | 5.1647 | 1100 | 0.1745 | 0.1709 | | 0.2121 | 5.6353 | 1200 | 0.1602 | 0.1674 | | 0.2121 | 6.1035 | 1300 | 0.1627 | 0.1588 | | 0.2121 | 6.5741 | 1400 | 0.1593 | 0.1563 | | 0.1148 | 7.0424 | 1500 | 0.1660 | 0.1593 | | 0.1148 | 7.5129 | 1600 | 0.1655 | 0.1551 | | 0.1148 | 7.9835 | 1700 | 0.1581 | 0.1520 | | 0.1148 | 8.4518 | 1800 | 0.1771 | 0.1493 | | 0.1148 | 8.9224 | 1900 | 0.1778 | 0.1482 | | 0.0723 | 9.3906 | 2000 | 0.1683 | 0.1402 | | 0.0723 | 9.8612 | 2100 | 0.1676 | 0.1378 | | 0.0723 | 10.3294 | 2200 | 0.1672 | 0.1365 | | 0.0723 | 10.8 | 2300 | 0.1646 | 0.1332 | | 0.0723 | 11.2682 | 2400 | 0.1751 | 0.1337 | | 0.0504 | 11.7388 | 2500 | 0.1742 | 0.1353 | | 0.0504 | 12.2071 | 2600 | 0.1809 | 0.1329 | | 0.0504 | 12.6776 | 2700 | 0.1769 | 0.1298 | | 0.0504 | 13.1459 | 2800 | 0.1752 | 0.1289 | | 0.0504 | 13.6165 | 2900 | 0.1782 | 0.1275 | | 0.0382 | 14.0847 | 3000 | 0.1789 | 0.1289 | | 0.0382 | 14.5553 | 3100 | 0.1783 | 0.1275 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0