File size: 2,258 Bytes
b493bea
 
 
 
 
 
 
 
 
 
 
 
 
f0e2eeb
b493bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from typing import Dict, List, Any
from tempfile import TemporaryDirectory
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
from PIL import Image
import torch
import requests


class EndpointHandler:
    def __init__(self, path=""):
        self.processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")

    
        device = 'gpu' if torch.cuda.is_available() else 'cpu'

        model = LlavaNextForConditionalGeneration.from_pretrained(
            "llava-hf/llava-v1.6-mistral-7b-hf", 
            torch_dtype=torch.float32 if device == 'cpu' else torch.float16, 
            low_cpu_mem_usage=True
        )
        model.to(device)

        self.model = model
        self.device = device

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
        data args:
            text (:obj: `str`)
            files (:obj: `list`) - List of URLs to images
        Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """
        # get inputs
        prompt = data.pop("prompt", data)
        # get additional date field0
        image_url = data.pop("files", None)[-1]['path']

        print(image_url)
        print(prompt)

        if image_url is None:
            return "You need to upload an image URL for LLaVA to work."

        # Create a temporary directory
        with TemporaryDirectory() as tmpdirname:
            # Download the image
            response = requests.get(image_url)
            if response.status_code != 200:
                return "Failed to download the image."

            # Define the path for the downloaded image
            image_path = f"{tmpdirname}/image.jpg"
            with open(image_path, "wb") as f:
                f.write(response.content)

            # Open the downloaded image
            with Image.open(image_path).convert("RGB") as image:
                prompt = f"[INST] <image>\n{prompt} [/INST]"

                inputs = self.processor(prompt, image, return_tensors="pt").to(self.device)

                output = self.model.generate(**inputs, max_new_tokens=100)

                clean = self.processor.decode(output[0], skip_special_tokens=True)

                return clean