--- license: mit language: - en base_model: - TinyLlama/TinyLlama-1.1B-Chat-v1.0 - TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T library_name: transformers tags: - mergekit - merged-model - tinyllama - stablelm - language-model --- # 🚀 TinyStable-Hybrid-1.6B: Merging Efficiency & Power ## 📌 Overview **TinyStable-Hybrid-1.6B** is an **experimental hybrid language model** that merges the capabilities of TinyLlama and StableLM. Built using **MergeKit**, this model is designed to balance performance and efficiency while offering strong text generation capabilities. 🔗 **Created by**: Matteo Khan 🎓 **Affiliation**: Apprentice at TW3 Partners (Generative AI Research) 📍 **License**: MIT 🔗 [Connect with me on LinkedIn](https://www.linkedin.com/in/matteo-khan-a10309263/) 🔍 [Model on Hugging Face](https://huggingface.co/MatteoKhan/TinyStable-Hybrid-1.6B) ## 🧠 Model Details - **Model Type**: Hybrid Language Model (Merged) - **Parent Models**: - [TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) - [TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) - **Merging Technique**: Linear Merge (MergeKit) ## 🎯 Intended Use This model is primarily intended for **research and experimentation** in hybrid model optimization. Potential use cases include: - ✅ Text Generation - ✅ Conversational AI - ✅ Creative Writing Assistance - ✅ Exploration of Model Merging Effects ## ⚠️ Limitations & Considerations While **TinyStable-Hybrid-1.6B** offers enhanced capabilities, it also inherits certain limitations from its parent models: - ❌ May generate **inaccurate or misleading** information - ⚠️ Potential for **biased, offensive, or harmful** content - 🔄 Merging may introduce **unpredictable behaviors** - 📉 Performance may **vary across different tasks** ## 🔬 Merging Process & Configuration This is **not a newly trained model**, but rather a merge of existing models using the following configuration: ```yaml merge_method: linear dtype: float16 models: - model: "TinyLlama/TinyLlama-1.1B-Chat-v1.0" parameters: t: 1.0 weight: 0.5 - model: "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T" parameters: t: 1.0 weight: 0.5 parameters: normalize: true int8_mask: false layers: - pattern: "model.*" ``` 📊 **No formal evaluation** has been conducted yet. Users are encouraged to **benchmark and share feedback**! ## 🌍 Environmental Impact By utilizing **model merging** rather than training from scratch, **TinyStable-Hybrid-1.6B** significantly reduces computational and environmental costs. ## 🚀 How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "MatteoKhan/TinyStable-Hybrid-1.6B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Example usage prompt = "Write a short poem about artificial intelligence." inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=200) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` **📝 TinyLlama** ```bibtex @misc{zhang2024tinyllama, title={TinyLlama: An Open-Source Small Language Model}, author={Jiayu Zhang and others}, year={2024}, eprint={2401.02385}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` 📩 **Feedback & Contact**: Reach out via [Hugging Face](https://huggingface.co/MatteoKhan). 🎉 **Happy Experimenting!** 🚀