Training in progress, step 350
Browse files- README.md +249 -0
- config.json +32 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: aubmindlab/bert-base-arabertv02
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: Arabic_FineTuningAraBERT_AugV0_k5_task1_organization_fold0
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# Arabic_FineTuningAraBERT_AugV0_k5_task1_organization_fold0
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.7040
|
19 |
+
- Qwk: 0.7342
|
20 |
+
- Mse: 0.7040
|
21 |
+
- Rmse: 0.8391
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 10
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|
51 |
+
|:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:|
|
52 |
+
| No log | 0.0526 | 2 | 4.9902 | -0.0064 | 4.9902 | 2.2339 |
|
53 |
+
| No log | 0.1053 | 4 | 2.6556 | 0.0759 | 2.6556 | 1.6296 |
|
54 |
+
| No log | 0.1579 | 6 | 1.5564 | 0.2523 | 1.5564 | 1.2475 |
|
55 |
+
| No log | 0.2105 | 8 | 1.3162 | 0.0950 | 1.3162 | 1.1473 |
|
56 |
+
| No log | 0.2632 | 10 | 1.2534 | 0.2791 | 1.2534 | 1.1196 |
|
57 |
+
| No log | 0.3158 | 12 | 1.2352 | 0.0950 | 1.2352 | 1.1114 |
|
58 |
+
| No log | 0.3684 | 14 | 1.2817 | 0.0742 | 1.2817 | 1.1321 |
|
59 |
+
| No log | 0.4211 | 16 | 1.3246 | 0.0742 | 1.3246 | 1.1509 |
|
60 |
+
| No log | 0.4737 | 18 | 1.3278 | 0.0742 | 1.3278 | 1.1523 |
|
61 |
+
| No log | 0.5263 | 20 | 1.2961 | 0.2674 | 1.2961 | 1.1384 |
|
62 |
+
| No log | 0.5789 | 22 | 1.2532 | 0.5093 | 1.2532 | 1.1194 |
|
63 |
+
| No log | 0.6316 | 24 | 1.1332 | 0.5095 | 1.1332 | 1.0645 |
|
64 |
+
| No log | 0.6842 | 26 | 1.0417 | 0.4867 | 1.0417 | 1.0207 |
|
65 |
+
| No log | 0.7368 | 28 | 1.0181 | 0.4639 | 1.0181 | 1.0090 |
|
66 |
+
| No log | 0.7895 | 30 | 0.9829 | 0.4639 | 0.9829 | 0.9914 |
|
67 |
+
| No log | 0.8421 | 32 | 1.0157 | 0.3947 | 1.0157 | 1.0078 |
|
68 |
+
| No log | 0.8947 | 34 | 1.0145 | 0.2791 | 1.0145 | 1.0072 |
|
69 |
+
| No log | 0.9474 | 36 | 0.9102 | 0.5095 | 0.9102 | 0.9541 |
|
70 |
+
| No log | 1.0 | 38 | 0.8194 | 0.5323 | 0.8194 | 0.9052 |
|
71 |
+
| No log | 1.0526 | 40 | 0.7790 | 0.5760 | 0.7790 | 0.8826 |
|
72 |
+
| No log | 1.1053 | 42 | 0.7440 | 0.5760 | 0.7440 | 0.8625 |
|
73 |
+
| No log | 1.1579 | 44 | 0.7483 | 0.5760 | 0.7483 | 0.8650 |
|
74 |
+
| No log | 1.2105 | 46 | 0.7405 | 0.5323 | 0.7405 | 0.8606 |
|
75 |
+
| No log | 1.2632 | 48 | 0.7711 | 0.4844 | 0.7711 | 0.8781 |
|
76 |
+
| No log | 1.3158 | 50 | 0.7997 | 0.4844 | 0.7997 | 0.8942 |
|
77 |
+
| No log | 1.3684 | 52 | 0.7846 | 0.5095 | 0.7846 | 0.8857 |
|
78 |
+
| No log | 1.4211 | 54 | 0.7970 | 0.4867 | 0.7970 | 0.8927 |
|
79 |
+
| No log | 1.4737 | 56 | 0.8132 | 0.4867 | 0.8132 | 0.9018 |
|
80 |
+
| No log | 1.5263 | 58 | 0.8494 | 0.4650 | 0.8494 | 0.9216 |
|
81 |
+
| No log | 1.5789 | 60 | 0.8732 | 0.4855 | 0.8732 | 0.9344 |
|
82 |
+
| No log | 1.6316 | 62 | 0.9389 | 0.5084 | 0.9389 | 0.9690 |
|
83 |
+
| No log | 1.6842 | 64 | 0.9129 | 0.4844 | 0.9129 | 0.9555 |
|
84 |
+
| No log | 1.7368 | 66 | 0.7840 | 0.6503 | 0.7840 | 0.8854 |
|
85 |
+
| No log | 1.7895 | 68 | 0.6121 | 0.6595 | 0.6121 | 0.7824 |
|
86 |
+
| No log | 1.8421 | 70 | 0.7255 | 0.5435 | 0.7255 | 0.8517 |
|
87 |
+
| No log | 1.8947 | 72 | 0.7311 | 0.5783 | 0.7311 | 0.8550 |
|
88 |
+
| No log | 1.9474 | 74 | 0.6430 | 0.6407 | 0.6430 | 0.8019 |
|
89 |
+
| No log | 2.0 | 76 | 0.5832 | 0.6787 | 0.5832 | 0.7637 |
|
90 |
+
| No log | 2.0526 | 78 | 0.6522 | 0.5906 | 0.6522 | 0.8076 |
|
91 |
+
| No log | 2.1053 | 80 | 0.8273 | 0.5304 | 0.8273 | 0.9096 |
|
92 |
+
| No log | 2.1579 | 82 | 0.9320 | 0.4191 | 0.9320 | 0.9654 |
|
93 |
+
| No log | 2.2105 | 84 | 1.2347 | 0.2651 | 1.2347 | 1.1112 |
|
94 |
+
| No log | 2.2632 | 86 | 1.5619 | 0.1463 | 1.5619 | 1.2497 |
|
95 |
+
| No log | 2.3158 | 88 | 1.5629 | 0.1463 | 1.5629 | 1.2502 |
|
96 |
+
| No log | 2.3684 | 90 | 1.2954 | 0.3893 | 1.2954 | 1.1382 |
|
97 |
+
| No log | 2.4211 | 92 | 0.9802 | 0.6190 | 0.9802 | 0.9901 |
|
98 |
+
| No log | 2.4737 | 94 | 0.7549 | 0.5085 | 0.7549 | 0.8688 |
|
99 |
+
| No log | 2.5263 | 96 | 0.6865 | 0.6151 | 0.6865 | 0.8286 |
|
100 |
+
| No log | 2.5789 | 98 | 0.6663 | 0.6151 | 0.6663 | 0.8162 |
|
101 |
+
| No log | 2.6316 | 100 | 0.6932 | 0.5933 | 0.6932 | 0.8326 |
|
102 |
+
| No log | 2.6842 | 102 | 0.7180 | 0.5933 | 0.7180 | 0.8474 |
|
103 |
+
| No log | 2.7368 | 104 | 0.6878 | 0.5933 | 0.6878 | 0.8293 |
|
104 |
+
| No log | 2.7895 | 106 | 0.6212 | 0.6517 | 0.6212 | 0.7881 |
|
105 |
+
| No log | 2.8421 | 108 | 0.6090 | 0.6360 | 0.6090 | 0.7804 |
|
106 |
+
| No log | 2.8947 | 110 | 0.6280 | 0.6461 | 0.6280 | 0.7924 |
|
107 |
+
| No log | 2.9474 | 112 | 0.6547 | 0.6921 | 0.6547 | 0.8091 |
|
108 |
+
| No log | 3.0 | 114 | 0.6811 | 0.6712 | 0.6811 | 0.8253 |
|
109 |
+
| No log | 3.0526 | 116 | 0.6984 | 0.6915 | 0.6984 | 0.8357 |
|
110 |
+
| No log | 3.1053 | 118 | 0.7394 | 0.6915 | 0.7394 | 0.8599 |
|
111 |
+
| No log | 3.1579 | 120 | 0.7715 | 0.6143 | 0.7715 | 0.8783 |
|
112 |
+
| No log | 3.2105 | 122 | 0.7779 | 0.6143 | 0.7779 | 0.8820 |
|
113 |
+
| No log | 3.2632 | 124 | 0.7490 | 0.6100 | 0.7490 | 0.8654 |
|
114 |
+
| No log | 3.3158 | 126 | 0.6973 | 0.6107 | 0.6973 | 0.8351 |
|
115 |
+
| No log | 3.3684 | 128 | 0.6915 | 0.6067 | 0.6915 | 0.8316 |
|
116 |
+
| No log | 3.4211 | 130 | 0.7481 | 0.6842 | 0.7481 | 0.8649 |
|
117 |
+
| No log | 3.4737 | 132 | 0.8667 | 0.7244 | 0.8667 | 0.9309 |
|
118 |
+
| No log | 3.5263 | 134 | 0.8702 | 0.7692 | 0.8702 | 0.9329 |
|
119 |
+
| No log | 3.5789 | 136 | 0.7801 | 0.6813 | 0.7801 | 0.8832 |
|
120 |
+
| No log | 3.6316 | 138 | 0.7194 | 0.6698 | 0.7194 | 0.8482 |
|
121 |
+
| No log | 3.6842 | 140 | 0.7478 | 0.6698 | 0.7478 | 0.8647 |
|
122 |
+
| No log | 3.7368 | 142 | 0.7713 | 0.6698 | 0.7713 | 0.8782 |
|
123 |
+
| No log | 3.7895 | 144 | 0.8213 | 0.6922 | 0.8213 | 0.9063 |
|
124 |
+
| No log | 3.8421 | 146 | 0.7985 | 0.6922 | 0.7985 | 0.8936 |
|
125 |
+
| No log | 3.8947 | 148 | 0.6945 | 0.7614 | 0.6945 | 0.8334 |
|
126 |
+
| No log | 3.9474 | 150 | 0.6209 | 0.7696 | 0.6209 | 0.7880 |
|
127 |
+
| No log | 4.0 | 152 | 0.5796 | 0.7449 | 0.5796 | 0.7613 |
|
128 |
+
| No log | 4.0526 | 154 | 0.5634 | 0.7114 | 0.5634 | 0.7506 |
|
129 |
+
| No log | 4.1053 | 156 | 0.5716 | 0.6602 | 0.5716 | 0.7561 |
|
130 |
+
| No log | 4.1579 | 158 | 0.6233 | 0.7258 | 0.6233 | 0.7895 |
|
131 |
+
| No log | 4.2105 | 160 | 0.7196 | 0.7704 | 0.7196 | 0.8483 |
|
132 |
+
| No log | 4.2632 | 162 | 0.8001 | 0.8349 | 0.8001 | 0.8945 |
|
133 |
+
| No log | 4.3158 | 164 | 0.7363 | 0.8349 | 0.7363 | 0.8581 |
|
134 |
+
| No log | 4.3684 | 166 | 0.6284 | 0.7439 | 0.6284 | 0.7927 |
|
135 |
+
| No log | 4.4211 | 168 | 0.5769 | 0.6968 | 0.5769 | 0.7596 |
|
136 |
+
| No log | 4.4737 | 170 | 0.5553 | 0.6511 | 0.5553 | 0.7452 |
|
137 |
+
| No log | 4.5263 | 172 | 0.5505 | 0.6516 | 0.5505 | 0.7420 |
|
138 |
+
| No log | 4.5789 | 174 | 0.5505 | 0.6968 | 0.5505 | 0.7419 |
|
139 |
+
| No log | 4.6316 | 176 | 0.6729 | 0.7610 | 0.6729 | 0.8203 |
|
140 |
+
| No log | 4.6842 | 178 | 0.9648 | 0.7692 | 0.9648 | 0.9823 |
|
141 |
+
| No log | 4.7368 | 180 | 1.0634 | 0.7513 | 1.0634 | 1.0312 |
|
142 |
+
| No log | 4.7895 | 182 | 0.9688 | 0.6830 | 0.9688 | 0.9843 |
|
143 |
+
| No log | 4.8421 | 184 | 0.8465 | 0.6564 | 0.8465 | 0.9200 |
|
144 |
+
| No log | 4.8947 | 186 | 0.7782 | 0.5689 | 0.7782 | 0.8822 |
|
145 |
+
| No log | 4.9474 | 188 | 0.6968 | 0.5666 | 0.6968 | 0.8347 |
|
146 |
+
| No log | 5.0 | 190 | 0.6381 | 0.7003 | 0.6381 | 0.7988 |
|
147 |
+
| No log | 5.0526 | 192 | 0.6466 | 0.7073 | 0.6466 | 0.8041 |
|
148 |
+
| No log | 5.1053 | 194 | 0.6919 | 0.7346 | 0.6919 | 0.8318 |
|
149 |
+
| No log | 5.1579 | 196 | 0.7415 | 0.7612 | 0.7415 | 0.8611 |
|
150 |
+
| No log | 5.2105 | 198 | 0.7643 | 0.7162 | 0.7643 | 0.8742 |
|
151 |
+
| No log | 5.2632 | 200 | 0.7251 | 0.7254 | 0.7251 | 0.8515 |
|
152 |
+
| No log | 5.3158 | 202 | 0.6489 | 0.7342 | 0.6489 | 0.8055 |
|
153 |
+
| No log | 5.3684 | 204 | 0.6266 | 0.7258 | 0.6266 | 0.7916 |
|
154 |
+
| No log | 5.4211 | 206 | 0.6281 | 0.7176 | 0.6281 | 0.7925 |
|
155 |
+
| No log | 5.4737 | 208 | 0.6054 | 0.6829 | 0.6054 | 0.7781 |
|
156 |
+
| No log | 5.5263 | 210 | 0.6022 | 0.7003 | 0.6022 | 0.7760 |
|
157 |
+
| No log | 5.5789 | 212 | 0.6086 | 0.7073 | 0.6086 | 0.7801 |
|
158 |
+
| No log | 5.6316 | 214 | 0.6166 | 0.6775 | 0.6166 | 0.7852 |
|
159 |
+
| No log | 5.6842 | 216 | 0.6785 | 0.6842 | 0.6785 | 0.8237 |
|
160 |
+
| No log | 5.7368 | 218 | 0.7064 | 0.6915 | 0.7064 | 0.8405 |
|
161 |
+
| No log | 5.7895 | 220 | 0.7448 | 0.6915 | 0.7448 | 0.8630 |
|
162 |
+
| No log | 5.8421 | 222 | 0.7807 | 0.7623 | 0.7807 | 0.8836 |
|
163 |
+
| No log | 5.8947 | 224 | 0.7823 | 0.7623 | 0.7823 | 0.8845 |
|
164 |
+
| No log | 5.9474 | 226 | 0.7210 | 0.6915 | 0.7210 | 0.8491 |
|
165 |
+
| No log | 6.0 | 228 | 0.6592 | 0.6100 | 0.6592 | 0.8119 |
|
166 |
+
| No log | 6.0526 | 230 | 0.6322 | 0.5633 | 0.6322 | 0.7951 |
|
167 |
+
| No log | 6.1053 | 232 | 0.6303 | 0.5633 | 0.6303 | 0.7939 |
|
168 |
+
| No log | 6.1579 | 234 | 0.6395 | 0.6533 | 0.6395 | 0.7997 |
|
169 |
+
| No log | 6.2105 | 236 | 0.6617 | 0.6842 | 0.6617 | 0.8135 |
|
170 |
+
| No log | 6.2632 | 238 | 0.6774 | 0.6842 | 0.6774 | 0.8230 |
|
171 |
+
| No log | 6.3158 | 240 | 0.6861 | 0.7149 | 0.6861 | 0.8283 |
|
172 |
+
| No log | 6.3684 | 242 | 0.6752 | 0.7149 | 0.6752 | 0.8217 |
|
173 |
+
| No log | 6.4211 | 244 | 0.6591 | 0.7149 | 0.6591 | 0.8118 |
|
174 |
+
| No log | 6.4737 | 246 | 0.6304 | 0.6713 | 0.6304 | 0.7940 |
|
175 |
+
| No log | 6.5263 | 248 | 0.6338 | 0.7003 | 0.6338 | 0.7961 |
|
176 |
+
| No log | 6.5789 | 250 | 0.6668 | 0.7232 | 0.6668 | 0.8166 |
|
177 |
+
| No log | 6.6316 | 252 | 0.6705 | 0.7232 | 0.6705 | 0.8188 |
|
178 |
+
| No log | 6.6842 | 254 | 0.6388 | 0.7003 | 0.6388 | 0.7993 |
|
179 |
+
| No log | 6.7368 | 256 | 0.6242 | 0.6713 | 0.6242 | 0.7901 |
|
180 |
+
| No log | 6.7895 | 258 | 0.6146 | 0.6713 | 0.6146 | 0.7839 |
|
181 |
+
| No log | 6.8421 | 260 | 0.6257 | 0.6775 | 0.6257 | 0.7910 |
|
182 |
+
| No log | 6.8947 | 262 | 0.6625 | 0.7149 | 0.6625 | 0.8139 |
|
183 |
+
| No log | 6.9474 | 264 | 0.6926 | 0.7149 | 0.6926 | 0.8322 |
|
184 |
+
| No log | 7.0 | 266 | 0.7377 | 0.7232 | 0.7377 | 0.8589 |
|
185 |
+
| No log | 7.0526 | 268 | 0.7486 | 0.7232 | 0.7486 | 0.8652 |
|
186 |
+
| No log | 7.1053 | 270 | 0.7105 | 0.7149 | 0.7105 | 0.8429 |
|
187 |
+
| No log | 7.1579 | 272 | 0.6921 | 0.7149 | 0.6921 | 0.8320 |
|
188 |
+
| No log | 7.2105 | 274 | 0.6926 | 0.7149 | 0.6926 | 0.8322 |
|
189 |
+
| No log | 7.2632 | 276 | 0.7078 | 0.7149 | 0.7078 | 0.8413 |
|
190 |
+
| No log | 7.3158 | 278 | 0.7037 | 0.7149 | 0.7037 | 0.8389 |
|
191 |
+
| No log | 7.3684 | 280 | 0.6827 | 0.7149 | 0.6827 | 0.8262 |
|
192 |
+
| No log | 7.4211 | 282 | 0.6681 | 0.7149 | 0.6681 | 0.8174 |
|
193 |
+
| No log | 7.4737 | 284 | 0.6462 | 0.7149 | 0.6462 | 0.8039 |
|
194 |
+
| No log | 7.5263 | 286 | 0.6401 | 0.7149 | 0.6401 | 0.8000 |
|
195 |
+
| No log | 7.5789 | 288 | 0.6503 | 0.7149 | 0.6503 | 0.8064 |
|
196 |
+
| No log | 7.6316 | 290 | 0.6801 | 0.7232 | 0.6801 | 0.8247 |
|
197 |
+
| No log | 7.6842 | 292 | 0.7036 | 0.7232 | 0.7036 | 0.8388 |
|
198 |
+
| No log | 7.7368 | 294 | 0.7161 | 0.7823 | 0.7161 | 0.8462 |
|
199 |
+
| No log | 7.7895 | 296 | 0.7539 | 0.8019 | 0.7539 | 0.8683 |
|
200 |
+
| No log | 7.8421 | 298 | 0.7832 | 0.8019 | 0.7832 | 0.8850 |
|
201 |
+
| No log | 7.8947 | 300 | 0.8215 | 0.8019 | 0.8215 | 0.9064 |
|
202 |
+
| No log | 7.9474 | 302 | 0.8357 | 0.7426 | 0.8357 | 0.9142 |
|
203 |
+
| No log | 8.0 | 304 | 0.8187 | 0.7426 | 0.8187 | 0.9048 |
|
204 |
+
| No log | 8.0526 | 306 | 0.7831 | 0.7426 | 0.7831 | 0.8849 |
|
205 |
+
| No log | 8.1053 | 308 | 0.7235 | 0.7717 | 0.7235 | 0.8506 |
|
206 |
+
| No log | 8.1579 | 310 | 0.6846 | 0.7149 | 0.6846 | 0.8274 |
|
207 |
+
| No log | 8.2105 | 312 | 0.6702 | 0.7073 | 0.6702 | 0.8187 |
|
208 |
+
| No log | 8.2632 | 314 | 0.6703 | 0.7073 | 0.6703 | 0.8187 |
|
209 |
+
| No log | 8.3158 | 316 | 0.6836 | 0.7149 | 0.6836 | 0.8268 |
|
210 |
+
| No log | 8.3684 | 318 | 0.7035 | 0.7717 | 0.7035 | 0.8388 |
|
211 |
+
| No log | 8.4211 | 320 | 0.7167 | 0.7823 | 0.7167 | 0.8466 |
|
212 |
+
| No log | 8.4737 | 322 | 0.7308 | 0.8019 | 0.7308 | 0.8549 |
|
213 |
+
| No log | 8.5263 | 324 | 0.7273 | 0.8019 | 0.7273 | 0.8528 |
|
214 |
+
| No log | 8.5789 | 326 | 0.7063 | 0.8019 | 0.7063 | 0.8404 |
|
215 |
+
| No log | 8.6316 | 328 | 0.6804 | 0.7717 | 0.6804 | 0.8248 |
|
216 |
+
| No log | 8.6842 | 330 | 0.6671 | 0.7986 | 0.6671 | 0.8168 |
|
217 |
+
| No log | 8.7368 | 332 | 0.6417 | 0.7355 | 0.6417 | 0.8011 |
|
218 |
+
| No log | 8.7895 | 334 | 0.6267 | 0.7618 | 0.6267 | 0.7916 |
|
219 |
+
| No log | 8.8421 | 336 | 0.6257 | 0.7449 | 0.6257 | 0.7910 |
|
220 |
+
| No log | 8.8947 | 338 | 0.6393 | 0.7355 | 0.6393 | 0.7996 |
|
221 |
+
| No log | 8.9474 | 340 | 0.6636 | 0.7358 | 0.6636 | 0.8146 |
|
222 |
+
| No log | 9.0 | 342 | 0.6832 | 0.7264 | 0.6832 | 0.8266 |
|
223 |
+
| No log | 9.0526 | 344 | 0.7000 | 0.7342 | 0.7000 | 0.8367 |
|
224 |
+
| No log | 9.1053 | 346 | 0.7061 | 0.7342 | 0.7061 | 0.8403 |
|
225 |
+
| No log | 9.1579 | 348 | 0.7049 | 0.7342 | 0.7049 | 0.8396 |
|
226 |
+
| No log | 9.2105 | 350 | 0.7023 | 0.7264 | 0.7023 | 0.8380 |
|
227 |
+
| No log | 9.2632 | 352 | 0.6957 | 0.7264 | 0.6957 | 0.8341 |
|
228 |
+
| No log | 9.3158 | 354 | 0.6889 | 0.7264 | 0.6889 | 0.8300 |
|
229 |
+
| No log | 9.3684 | 356 | 0.6826 | 0.7095 | 0.6826 | 0.8262 |
|
230 |
+
| No log | 9.4211 | 358 | 0.6796 | 0.7095 | 0.6796 | 0.8244 |
|
231 |
+
| No log | 9.4737 | 360 | 0.6784 | 0.7095 | 0.6784 | 0.8237 |
|
232 |
+
| No log | 9.5263 | 362 | 0.6763 | 0.7095 | 0.6763 | 0.8224 |
|
233 |
+
| No log | 9.5789 | 364 | 0.6774 | 0.7095 | 0.6774 | 0.8231 |
|
234 |
+
| No log | 9.6316 | 366 | 0.6796 | 0.7095 | 0.6796 | 0.8243 |
|
235 |
+
| No log | 9.6842 | 368 | 0.6857 | 0.7095 | 0.6857 | 0.8281 |
|
236 |
+
| No log | 9.7368 | 370 | 0.6933 | 0.7264 | 0.6933 | 0.8326 |
|
237 |
+
| No log | 9.7895 | 372 | 0.6977 | 0.7264 | 0.6977 | 0.8353 |
|
238 |
+
| No log | 9.8421 | 374 | 0.7015 | 0.7342 | 0.7015 | 0.8376 |
|
239 |
+
| No log | 9.8947 | 376 | 0.7030 | 0.7342 | 0.7030 | 0.8385 |
|
240 |
+
| No log | 9.9474 | 378 | 0.7039 | 0.7342 | 0.7039 | 0.8390 |
|
241 |
+
| No log | 10.0 | 380 | 0.7040 | 0.7342 | 0.7040 | 0.8391 |
|
242 |
+
|
243 |
+
|
244 |
+
### Framework versions
|
245 |
+
|
246 |
+
- Transformers 4.44.2
|
247 |
+
- Pytorch 2.4.0+cu118
|
248 |
+
- Datasets 2.21.0
|
249 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "aubmindlab/bert-base-arabertv02",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"problem_type": "regression",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.44.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 64000
|
32 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86b1356cddcf2e6ae66558026e35c84cbef7be954bc957285183ba32c76b5275
|
3 |
+
size 540799996
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b019e29ca003076c127a56caef919b4c0e5927d928cdc438ea5ce4124b83b980
|
3 |
+
size 5240
|