vaibhavad commited on
Commit
8627e97
·
verified ·
1 Parent(s): a661bf6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -2495
README.md CHANGED
@@ -23,2501 +23,6 @@ tags:
23
  - fever
24
  - hotpot_qa
25
  - mteb
26
- model-index:
27
- - name: LLM2Vec-Sheared-LLaMA-unsup-simcse-mean
28
- results:
29
- - task:
30
- type: Classification
31
- dataset:
32
- type: mteb/amazon_counterfactual
33
- name: MTEB AmazonCounterfactualClassification (en)
34
- config: en
35
- split: test
36
- revision: e8379541af4e31359cca9fbcf4b00f2671dba205
37
- metrics:
38
- - type: accuracy
39
- value: 72.92537313432835
40
- - type: ap
41
- value: 36.6875749512053
42
- - type: f1
43
- value: 67.36274146169845
44
- - task:
45
- type: Classification
46
- dataset:
47
- type: mteb/amazon_polarity
48
- name: MTEB AmazonPolarityClassification
49
- config: default
50
- split: test
51
- revision: e2d317d38cd51312af73b3d32a06d1a08b442046
52
- metrics:
53
- - type: accuracy
54
- value: 74.282675
55
- - type: ap
56
- value: 69.15441866642587
57
- - type: f1
58
- value: 74.13028166370813
59
- - task:
60
- type: Classification
61
- dataset:
62
- type: mteb/amazon_reviews_multi
63
- name: MTEB AmazonReviewsClassification (en)
64
- config: en
65
- split: test
66
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
67
- metrics:
68
- - type: accuracy
69
- value: 36.136
70
- - type: f1
71
- value: 35.840498320506235
72
- - task:
73
- type: Retrieval
74
- dataset:
75
- type: arguana
76
- name: MTEB ArguAna
77
- config: default
78
- split: test
79
- revision: None
80
- metrics:
81
- - type: map_at_1
82
- value: 21.407999999999998
83
- - type: map_at_10
84
- value: 35.474
85
- - type: map_at_100
86
- value: 36.653999999999996
87
- - type: map_at_1000
88
- value: 36.68
89
- - type: map_at_3
90
- value: 30.974
91
- - type: map_at_5
92
- value: 33.265
93
- - type: mrr_at_1
94
- value: 22.119
95
- - type: mrr_at_10
96
- value: 35.714
97
- - type: mrr_at_100
98
- value: 36.895
99
- - type: mrr_at_1000
100
- value: 36.921
101
- - type: mrr_at_3
102
- value: 31.2
103
- - type: mrr_at_5
104
- value: 33.518
105
- - type: ndcg_at_1
106
- value: 21.407999999999998
107
- - type: ndcg_at_10
108
- value: 43.644
109
- - type: ndcg_at_100
110
- value: 49.035000000000004
111
- - type: ndcg_at_1000
112
- value: 49.685
113
- - type: ndcg_at_3
114
- value: 34.174
115
- - type: ndcg_at_5
116
- value: 38.288
117
- - type: precision_at_1
118
- value: 21.407999999999998
119
- - type: precision_at_10
120
- value: 6.999
121
- - type: precision_at_100
122
- value: 0.9440000000000001
123
- - type: precision_at_1000
124
- value: 0.099
125
- - type: precision_at_3
126
- value: 14.485999999999999
127
- - type: precision_at_5
128
- value: 10.683
129
- - type: recall_at_1
130
- value: 21.407999999999998
131
- - type: recall_at_10
132
- value: 69.986
133
- - type: recall_at_100
134
- value: 94.381
135
- - type: recall_at_1000
136
- value: 99.431
137
- - type: recall_at_3
138
- value: 43.457
139
- - type: recall_at_5
140
- value: 53.413999999999994
141
- - task:
142
- type: Clustering
143
- dataset:
144
- type: mteb/arxiv-clustering-p2p
145
- name: MTEB ArxivClusteringP2P
146
- config: default
147
- split: test
148
- revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
149
- metrics:
150
- - type: v_measure
151
- value: 42.915010245699904
152
- - task:
153
- type: Clustering
154
- dataset:
155
- type: mteb/arxiv-clustering-s2s
156
- name: MTEB ArxivClusteringS2S
157
- config: default
158
- split: test
159
- revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
160
- metrics:
161
- - type: v_measure
162
- value: 35.19568272188972
163
- - task:
164
- type: Reranking
165
- dataset:
166
- type: mteb/askubuntudupquestions-reranking
167
- name: MTEB AskUbuntuDupQuestions
168
- config: default
169
- split: test
170
- revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
171
- metrics:
172
- - type: map
173
- value: 52.696972763822615
174
- - type: mrr
175
- value: 65.87136701402629
176
- - task:
177
- type: STS
178
- dataset:
179
- type: mteb/biosses-sts
180
- name: MTEB BIOSSES
181
- config: default
182
- split: test
183
- revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
184
- metrics:
185
- - type: cos_sim_spearman
186
- value: 75.12038636775851
187
- - task:
188
- type: Classification
189
- dataset:
190
- type: mteb/banking77
191
- name: MTEB Banking77Classification
192
- config: default
193
- split: test
194
- revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
195
- metrics:
196
- - type: accuracy
197
- value: 78.99675324675324
198
- - type: f1
199
- value: 78.90527329824852
200
- - task:
201
- type: Clustering
202
- dataset:
203
- type: mteb/biorxiv-clustering-p2p
204
- name: MTEB BiorxivClusteringP2P
205
- config: default
206
- split: test
207
- revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
208
- metrics:
209
- - type: v_measure
210
- value: 35.02170435970243
211
- - task:
212
- type: Clustering
213
- dataset:
214
- type: mteb/biorxiv-clustering-s2s
215
- name: MTEB BiorxivClusteringS2S
216
- config: default
217
- split: test
218
- revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
219
- metrics:
220
- - type: v_measure
221
- value: 27.208216971540782
222
- - task:
223
- type: Retrieval
224
- dataset:
225
- type: cqadupstack/android
226
- name: MTEB CQADupstackAndroidRetrieval
227
- config: default
228
- split: test
229
- revision: None
230
- metrics:
231
- - type: map_at_1
232
- value: 16.432
233
- - type: map_at_10
234
- value: 23.769000000000002
235
- - type: map_at_100
236
- value: 25.038
237
- - type: map_at_1000
238
- value: 25.208000000000002
239
- - type: map_at_3
240
- value: 21.532999999999998
241
- - type: map_at_5
242
- value: 22.668
243
- - type: mrr_at_1
244
- value: 21.316
245
- - type: mrr_at_10
246
- value: 28.89
247
- - type: mrr_at_100
248
- value: 29.799999999999997
249
- - type: mrr_at_1000
250
- value: 29.887999999999998
251
- - type: mrr_at_3
252
- value: 26.705000000000002
253
- - type: mrr_at_5
254
- value: 27.864
255
- - type: ndcg_at_1
256
- value: 21.316
257
- - type: ndcg_at_10
258
- value: 28.656
259
- - type: ndcg_at_100
260
- value: 34.405
261
- - type: ndcg_at_1000
262
- value: 37.771
263
- - type: ndcg_at_3
264
- value: 24.98
265
- - type: ndcg_at_5
266
- value: 26.384999999999998
267
- - type: precision_at_1
268
- value: 21.316
269
- - type: precision_at_10
270
- value: 5.8229999999999995
271
- - type: precision_at_100
272
- value: 1.157
273
- - type: precision_at_1000
274
- value: 0.181
275
- - type: precision_at_3
276
- value: 12.446
277
- - type: precision_at_5
278
- value: 8.984
279
- - type: recall_at_1
280
- value: 16.432
281
- - type: recall_at_10
282
- value: 37.696000000000005
283
- - type: recall_at_100
284
- value: 63.198
285
- - type: recall_at_1000
286
- value: 86.651
287
- - type: recall_at_3
288
- value: 26.651000000000003
289
- - type: recall_at_5
290
- value: 30.901
291
- - task:
292
- type: Retrieval
293
- dataset:
294
- type: cqadupstack/english
295
- name: MTEB CQADupstackEnglishRetrieval
296
- config: default
297
- split: test
298
- revision: None
299
- metrics:
300
- - type: map_at_1
301
- value: 16.106
302
- - type: map_at_10
303
- value: 21.770999999999997
304
- - type: map_at_100
305
- value: 22.538
306
- - type: map_at_1000
307
- value: 22.656000000000002
308
- - type: map_at_3
309
- value: 19.918
310
- - type: map_at_5
311
- value: 20.957
312
- - type: mrr_at_1
313
- value: 21.083
314
- - type: mrr_at_10
315
- value: 26.502
316
- - type: mrr_at_100
317
- value: 27.161
318
- - type: mrr_at_1000
319
- value: 27.234
320
- - type: mrr_at_3
321
- value: 24.735
322
- - type: mrr_at_5
323
- value: 25.753999999999998
324
- - type: ndcg_at_1
325
- value: 21.083
326
- - type: ndcg_at_10
327
- value: 25.625999999999998
328
- - type: ndcg_at_100
329
- value: 29.152
330
- - type: ndcg_at_1000
331
- value: 32.025
332
- - type: ndcg_at_3
333
- value: 22.721
334
- - type: ndcg_at_5
335
- value: 24.029
336
- - type: precision_at_1
337
- value: 21.083
338
- - type: precision_at_10
339
- value: 4.8919999999999995
340
- - type: precision_at_100
341
- value: 0.844
342
- - type: precision_at_1000
343
- value: 0.13699999999999998
344
- - type: precision_at_3
345
- value: 11.104
346
- - type: precision_at_5
347
- value: 7.987
348
- - type: recall_at_1
349
- value: 16.106
350
- - type: recall_at_10
351
- value: 32.385999999999996
352
- - type: recall_at_100
353
- value: 47.961999999999996
354
- - type: recall_at_1000
355
- value: 67.63900000000001
356
- - type: recall_at_3
357
- value: 23.568
358
- - type: recall_at_5
359
- value: 27.326
360
- - task:
361
- type: Retrieval
362
- dataset:
363
- type: cqadupstack/gaming
364
- name: MTEB CQADupstackGamingRetrieval
365
- config: default
366
- split: test
367
- revision: None
368
- metrics:
369
- - type: map_at_1
370
- value: 22.517
371
- - type: map_at_10
372
- value: 29.593999999999998
373
- - type: map_at_100
374
- value: 30.695
375
- - type: map_at_1000
376
- value: 30.803000000000004
377
- - type: map_at_3
378
- value: 27.592
379
- - type: map_at_5
380
- value: 28.768
381
- - type: mrr_at_1
382
- value: 26.27
383
- - type: mrr_at_10
384
- value: 33.076
385
- - type: mrr_at_100
386
- value: 33.998
387
- - type: mrr_at_1000
388
- value: 34.073
389
- - type: mrr_at_3
390
- value: 31.223
391
- - type: mrr_at_5
392
- value: 32.257000000000005
393
- - type: ndcg_at_1
394
- value: 26.27
395
- - type: ndcg_at_10
396
- value: 33.726
397
- - type: ndcg_at_100
398
- value: 39.079
399
- - type: ndcg_at_1000
400
- value: 41.762
401
- - type: ndcg_at_3
402
- value: 30.064
403
- - type: ndcg_at_5
404
- value: 31.858999999999998
405
- - type: precision_at_1
406
- value: 26.27
407
- - type: precision_at_10
408
- value: 5.448
409
- - type: precision_at_100
410
- value: 0.898
411
- - type: precision_at_1000
412
- value: 0.121
413
- - type: precision_at_3
414
- value: 13.417000000000002
415
- - type: precision_at_5
416
- value: 9.317
417
- - type: recall_at_1
418
- value: 22.517
419
- - type: recall_at_10
420
- value: 42.814
421
- - type: recall_at_100
422
- value: 67.037
423
- - type: recall_at_1000
424
- value: 86.89099999999999
425
- - type: recall_at_3
426
- value: 33.041
427
- - type: recall_at_5
428
- value: 37.389
429
- - task:
430
- type: Retrieval
431
- dataset:
432
- type: cqadupstack/gis
433
- name: MTEB CQADupstackGisRetrieval
434
- config: default
435
- split: test
436
- revision: None
437
- metrics:
438
- - type: map_at_1
439
- value: 7.681
440
- - type: map_at_10
441
- value: 10.655000000000001
442
- - type: map_at_100
443
- value: 11.274000000000001
444
- - type: map_at_1000
445
- value: 11.381
446
- - type: map_at_3
447
- value: 9.793000000000001
448
- - type: map_at_5
449
- value: 10.202
450
- - type: mrr_at_1
451
- value: 8.248999999999999
452
- - type: mrr_at_10
453
- value: 11.453000000000001
454
- - type: mrr_at_100
455
- value: 12.074
456
- - type: mrr_at_1000
457
- value: 12.174
458
- - type: mrr_at_3
459
- value: 10.452
460
- - type: mrr_at_5
461
- value: 10.989
462
- - type: ndcg_at_1
463
- value: 8.248999999999999
464
- - type: ndcg_at_10
465
- value: 12.467
466
- - type: ndcg_at_100
467
- value: 15.942
468
- - type: ndcg_at_1000
469
- value: 19.378999999999998
470
- - type: ndcg_at_3
471
- value: 10.631
472
- - type: ndcg_at_5
473
- value: 11.411
474
- - type: precision_at_1
475
- value: 8.248999999999999
476
- - type: precision_at_10
477
- value: 1.966
478
- - type: precision_at_100
479
- value: 0.40099999999999997
480
- - type: precision_at_1000
481
- value: 0.075
482
- - type: precision_at_3
483
- value: 4.444
484
- - type: precision_at_5
485
- value: 3.186
486
- - type: recall_at_1
487
- value: 7.681
488
- - type: recall_at_10
489
- value: 17.302
490
- - type: recall_at_100
491
- value: 34.014
492
- - type: recall_at_1000
493
- value: 61.207
494
- - type: recall_at_3
495
- value: 12.389
496
- - type: recall_at_5
497
- value: 14.158999999999999
498
- - task:
499
- type: Retrieval
500
- dataset:
501
- type: cqadupstack/mathematica
502
- name: MTEB CQADupstackMathematicaRetrieval
503
- config: default
504
- split: test
505
- revision: None
506
- metrics:
507
- - type: map_at_1
508
- value: 3.868
509
- - type: map_at_10
510
- value: 6.281000000000001
511
- - type: map_at_100
512
- value: 6.903
513
- - type: map_at_1000
514
- value: 7.038
515
- - type: map_at_3
516
- value: 5.234
517
- - type: map_at_5
518
- value: 5.685
519
- - type: mrr_at_1
520
- value: 5.1
521
- - type: mrr_at_10
522
- value: 8.148
523
- - type: mrr_at_100
524
- value: 8.846
525
- - type: mrr_at_1000
526
- value: 8.963000000000001
527
- - type: mrr_at_3
528
- value: 6.944
529
- - type: mrr_at_5
530
- value: 7.498
531
- - type: ndcg_at_1
532
- value: 5.1
533
- - type: ndcg_at_10
534
- value: 8.405999999999999
535
- - type: ndcg_at_100
536
- value: 12.014
537
- - type: ndcg_at_1000
538
- value: 15.956999999999999
539
- - type: ndcg_at_3
540
- value: 6.22
541
- - type: ndcg_at_5
542
- value: 6.962
543
- - type: precision_at_1
544
- value: 5.1
545
- - type: precision_at_10
546
- value: 1.8159999999999998
547
- - type: precision_at_100
548
- value: 0.437
549
- - type: precision_at_1000
550
- value: 0.09
551
- - type: precision_at_3
552
- value: 3.1510000000000002
553
- - type: precision_at_5
554
- value: 2.463
555
- - type: recall_at_1
556
- value: 3.868
557
- - type: recall_at_10
558
- value: 13.319
559
- - type: recall_at_100
560
- value: 29.985
561
- - type: recall_at_1000
562
- value: 59.245999999999995
563
- - type: recall_at_3
564
- value: 7.0809999999999995
565
- - type: recall_at_5
566
- value: 8.914
567
- - task:
568
- type: Retrieval
569
- dataset:
570
- type: cqadupstack/physics
571
- name: MTEB CQADupstackPhysicsRetrieval
572
- config: default
573
- split: test
574
- revision: None
575
- metrics:
576
- - type: map_at_1
577
- value: 13.091
578
- - type: map_at_10
579
- value: 18.701999999999998
580
- - type: map_at_100
581
- value: 19.897000000000002
582
- - type: map_at_1000
583
- value: 20.044
584
- - type: map_at_3
585
- value: 17.041999999999998
586
- - type: map_at_5
587
- value: 17.943
588
- - type: mrr_at_1
589
- value: 16.939
590
- - type: mrr_at_10
591
- value: 23.038
592
- - type: mrr_at_100
593
- value: 24.029
594
- - type: mrr_at_1000
595
- value: 24.12
596
- - type: mrr_at_3
597
- value: 21.221999999999998
598
- - type: mrr_at_5
599
- value: 22.198999999999998
600
- - type: ndcg_at_1
601
- value: 16.939
602
- - type: ndcg_at_10
603
- value: 22.566
604
- - type: ndcg_at_100
605
- value: 28.364
606
- - type: ndcg_at_1000
607
- value: 31.646
608
- - type: ndcg_at_3
609
- value: 19.646
610
- - type: ndcg_at_5
611
- value: 20.915
612
- - type: precision_at_1
613
- value: 16.939
614
- - type: precision_at_10
615
- value: 4.340999999999999
616
- - type: precision_at_100
617
- value: 0.882
618
- - type: precision_at_1000
619
- value: 0.13799999999999998
620
- - type: precision_at_3
621
- value: 9.785
622
- - type: precision_at_5
623
- value: 6.93
624
- - type: recall_at_1
625
- value: 13.091
626
- - type: recall_at_10
627
- value: 30.022
628
- - type: recall_at_100
629
- value: 55.579
630
- - type: recall_at_1000
631
- value: 78.14
632
- - type: recall_at_3
633
- value: 21.4
634
- - type: recall_at_5
635
- value: 25.020999999999997
636
- - task:
637
- type: Retrieval
638
- dataset:
639
- type: cqadupstack/programmers
640
- name: MTEB CQADupstackProgrammersRetrieval
641
- config: default
642
- split: test
643
- revision: None
644
- metrics:
645
- - type: map_at_1
646
- value: 11.315999999999999
647
- - type: map_at_10
648
- value: 16.191
649
- - type: map_at_100
650
- value: 17.116
651
- - type: map_at_1000
652
- value: 17.262
653
- - type: map_at_3
654
- value: 14.302999999999999
655
- - type: map_at_5
656
- value: 15.278
657
- - type: mrr_at_1
658
- value: 14.269000000000002
659
- - type: mrr_at_10
660
- value: 19.409000000000002
661
- - type: mrr_at_100
662
- value: 20.298
663
- - type: mrr_at_1000
664
- value: 20.393
665
- - type: mrr_at_3
666
- value: 17.504
667
- - type: mrr_at_5
668
- value: 18.423000000000002
669
- - type: ndcg_at_1
670
- value: 14.269000000000002
671
- - type: ndcg_at_10
672
- value: 19.735
673
- - type: ndcg_at_100
674
- value: 24.582
675
- - type: ndcg_at_1000
676
- value: 28.337
677
- - type: ndcg_at_3
678
- value: 16.220000000000002
679
- - type: ndcg_at_5
680
- value: 17.644000000000002
681
- - type: precision_at_1
682
- value: 14.269000000000002
683
- - type: precision_at_10
684
- value: 3.721
685
- - type: precision_at_100
686
- value: 0.752
687
- - type: precision_at_1000
688
- value: 0.129
689
- - type: precision_at_3
690
- value: 7.800999999999999
691
- - type: precision_at_5
692
- value: 5.753
693
- - type: recall_at_1
694
- value: 11.315999999999999
695
- - type: recall_at_10
696
- value: 27.693
697
- - type: recall_at_100
698
- value: 49.265
699
- - type: recall_at_1000
700
- value: 76.291
701
- - type: recall_at_3
702
- value: 17.593
703
- - type: recall_at_5
704
- value: 21.368000000000002
705
- - task:
706
- type: Retrieval
707
- dataset:
708
- type: mteb/cqadupstack
709
- name: MTEB CQADupstackRetrieval
710
- config: default
711
- split: test
712
- revision: None
713
- metrics:
714
- - type: map_at_1
715
- value: 11.131583333333332
716
- - type: map_at_10
717
- value: 15.4605
718
- - type: map_at_100
719
- value: 16.3075
720
- - type: map_at_1000
721
- value: 16.4375
722
- - type: map_at_3
723
- value: 13.995833333333332
724
- - type: map_at_5
725
- value: 14.783666666666667
726
- - type: mrr_at_1
727
- value: 13.805833333333334
728
- - type: mrr_at_10
729
- value: 18.405749999999998
730
- - type: mrr_at_100
731
- value: 19.17516666666667
732
- - type: mrr_at_1000
733
- value: 19.265833333333333
734
- - type: mrr_at_3
735
- value: 16.892416666666666
736
- - type: mrr_at_5
737
- value: 17.71058333333333
738
- - type: ndcg_at_1
739
- value: 13.805833333333334
740
- - type: ndcg_at_10
741
- value: 18.500666666666664
742
- - type: ndcg_at_100
743
- value: 22.78191666666667
744
- - type: ndcg_at_1000
745
- value: 26.095583333333334
746
- - type: ndcg_at_3
747
- value: 15.846916666666663
748
- - type: ndcg_at_5
749
- value: 17.004250000000003
750
- - type: precision_at_1
751
- value: 13.805833333333334
752
- - type: precision_at_10
753
- value: 3.4233333333333325
754
- - type: precision_at_100
755
- value: 0.6828333333333333
756
- - type: precision_at_1000
757
- value: 0.11641666666666667
758
- - type: precision_at_3
759
- value: 7.511749999999999
760
- - type: precision_at_5
761
- value: 5.440916666666666
762
- - type: recall_at_1
763
- value: 11.131583333333332
764
- - type: recall_at_10
765
- value: 24.794166666666666
766
- - type: recall_at_100
767
- value: 44.356
768
- - type: recall_at_1000
769
- value: 68.71899999999998
770
- - type: recall_at_3
771
- value: 17.145583333333335
772
- - type: recall_at_5
773
- value: 20.229083333333335
774
- - task:
775
- type: Retrieval
776
- dataset:
777
- type: cqadupstack/stats
778
- name: MTEB CQADupstackStatsRetrieval
779
- config: default
780
- split: test
781
- revision: None
782
- metrics:
783
- - type: map_at_1
784
- value: 7.5520000000000005
785
- - type: map_at_10
786
- value: 10.355
787
- - type: map_at_100
788
- value: 10.875
789
- - type: map_at_1000
790
- value: 10.972999999999999
791
- - type: map_at_3
792
- value: 9.341000000000001
793
- - type: map_at_5
794
- value: 9.969
795
- - type: mrr_at_1
796
- value: 9.049
797
- - type: mrr_at_10
798
- value: 12.002
799
- - type: mrr_at_100
800
- value: 12.55
801
- - type: mrr_at_1000
802
- value: 12.635
803
- - type: mrr_at_3
804
- value: 11.12
805
- - type: mrr_at_5
806
- value: 11.626
807
- - type: ndcg_at_1
808
- value: 9.049
809
- - type: ndcg_at_10
810
- value: 12.241
811
- - type: ndcg_at_100
812
- value: 15.231
813
- - type: ndcg_at_1000
814
- value: 18.265
815
- - type: ndcg_at_3
816
- value: 10.424999999999999
817
- - type: ndcg_at_5
818
- value: 11.360000000000001
819
- - type: precision_at_1
820
- value: 9.049
821
- - type: precision_at_10
822
- value: 2.147
823
- - type: precision_at_100
824
- value: 0.411
825
- - type: precision_at_1000
826
- value: 0.073
827
- - type: precision_at_3
828
- value: 4.755
829
- - type: precision_at_5
830
- value: 3.558
831
- - type: recall_at_1
832
- value: 7.5520000000000005
833
- - type: recall_at_10
834
- value: 16.448999999999998
835
- - type: recall_at_100
836
- value: 30.505
837
- - type: recall_at_1000
838
- value: 54.435
839
- - type: recall_at_3
840
- value: 11.366
841
- - type: recall_at_5
842
- value: 13.758999999999999
843
- - task:
844
- type: Retrieval
845
- dataset:
846
- type: cqadupstack/tex
847
- name: MTEB CQADupstackTexRetrieval
848
- config: default
849
- split: test
850
- revision: None
851
- metrics:
852
- - type: map_at_1
853
- value: 5.954000000000001
854
- - type: map_at_10
855
- value: 8.229000000000001
856
- - type: map_at_100
857
- value: 8.694
858
- - type: map_at_1000
859
- value: 8.788
860
- - type: map_at_3
861
- value: 7.5
862
- - type: map_at_5
863
- value: 7.856000000000001
864
- - type: mrr_at_1
865
- value: 7.983
866
- - type: mrr_at_10
867
- value: 10.833
868
- - type: mrr_at_100
869
- value: 11.324
870
- - type: mrr_at_1000
871
- value: 11.404
872
- - type: mrr_at_3
873
- value: 9.911
874
- - type: mrr_at_5
875
- value: 10.401
876
- - type: ndcg_at_1
877
- value: 7.983
878
- - type: ndcg_at_10
879
- value: 10.126
880
- - type: ndcg_at_100
881
- value: 12.702
882
- - type: ndcg_at_1000
883
- value: 15.581999999999999
884
- - type: ndcg_at_3
885
- value: 8.779
886
- - type: ndcg_at_5
887
- value: 9.279
888
- - type: precision_at_1
889
- value: 7.983
890
- - type: precision_at_10
891
- value: 1.955
892
- - type: precision_at_100
893
- value: 0.392
894
- - type: precision_at_1000
895
- value: 0.076
896
- - type: precision_at_3
897
- value: 4.382
898
- - type: precision_at_5
899
- value: 3.09
900
- - type: recall_at_1
901
- value: 5.954000000000001
902
- - type: recall_at_10
903
- value: 13.472000000000001
904
- - type: recall_at_100
905
- value: 25.407999999999998
906
- - type: recall_at_1000
907
- value: 47.028
908
- - type: recall_at_3
909
- value: 9.367
910
- - type: recall_at_5
911
- value: 10.867
912
- - task:
913
- type: Retrieval
914
- dataset:
915
- type: cqadupstack/unix
916
- name: MTEB CQADupstackUnixRetrieval
917
- config: default
918
- split: test
919
- revision: None
920
- metrics:
921
- - type: map_at_1
922
- value: 8.894
923
- - type: map_at_10
924
- value: 12.758
925
- - type: map_at_100
926
- value: 13.639999999999999
927
- - type: map_at_1000
928
- value: 13.76
929
- - type: map_at_3
930
- value: 11.447000000000001
931
- - type: map_at_5
932
- value: 12.205
933
- - type: mrr_at_1
934
- value: 10.914
935
- - type: mrr_at_10
936
- value: 15.739
937
- - type: mrr_at_100
938
- value: 16.589000000000002
939
- - type: mrr_at_1000
940
- value: 16.679
941
- - type: mrr_at_3
942
- value: 14.179
943
- - type: mrr_at_5
944
- value: 15.162999999999998
945
- - type: ndcg_at_1
946
- value: 10.914
947
- - type: ndcg_at_10
948
- value: 15.629000000000001
949
- - type: ndcg_at_100
950
- value: 20.261000000000003
951
- - type: ndcg_at_1000
952
- value: 23.781
953
- - type: ndcg_at_3
954
- value: 13.102
955
- - type: ndcg_at_5
956
- value: 14.338000000000001
957
- - type: precision_at_1
958
- value: 10.914
959
- - type: precision_at_10
960
- value: 2.91
961
- - type: precision_at_100
962
- value: 0.601
963
- - type: precision_at_1000
964
- value: 0.10200000000000001
965
- - type: precision_at_3
966
- value: 6.311999999999999
967
- - type: precision_at_5
968
- value: 4.683
969
- - type: recall_at_1
970
- value: 8.894
971
- - type: recall_at_10
972
- value: 21.45
973
- - type: recall_at_100
974
- value: 42.617
975
- - type: recall_at_1000
976
- value: 69.233
977
- - type: recall_at_3
978
- value: 14.52
979
- - type: recall_at_5
980
- value: 17.681
981
- - task:
982
- type: Retrieval
983
- dataset:
984
- type: cqadupstack/webmasters
985
- name: MTEB CQADupstackWebmastersRetrieval
986
- config: default
987
- split: test
988
- revision: None
989
- metrics:
990
- - type: map_at_1
991
- value: 12.158
992
- - type: map_at_10
993
- value: 16.332
994
- - type: map_at_100
995
- value: 17.458000000000002
996
- - type: map_at_1000
997
- value: 17.687
998
- - type: map_at_3
999
- value: 14.529
1000
- - type: map_at_5
1001
- value: 15.515
1002
- - type: mrr_at_1
1003
- value: 15.809999999999999
1004
- - type: mrr_at_10
1005
- value: 19.917
1006
- - type: mrr_at_100
1007
- value: 20.875
1008
- - type: mrr_at_1000
1009
- value: 20.985
1010
- - type: mrr_at_3
1011
- value: 18.116
1012
- - type: mrr_at_5
1013
- value: 19.025
1014
- - type: ndcg_at_1
1015
- value: 15.809999999999999
1016
- - type: ndcg_at_10
1017
- value: 19.869999999999997
1018
- - type: ndcg_at_100
1019
- value: 24.907
1020
- - type: ndcg_at_1000
1021
- value: 29.076999999999998
1022
- - type: ndcg_at_3
1023
- value: 16.899
1024
- - type: ndcg_at_5
1025
- value: 18.23
1026
- - type: precision_at_1
1027
- value: 15.809999999999999
1028
- - type: precision_at_10
1029
- value: 3.972
1030
- - type: precision_at_100
1031
- value: 0.9860000000000001
1032
- - type: precision_at_1000
1033
- value: 0.203
1034
- - type: precision_at_3
1035
- value: 8.169
1036
- - type: precision_at_5
1037
- value: 6.087
1038
- - type: recall_at_1
1039
- value: 12.158
1040
- - type: recall_at_10
1041
- value: 26.338
1042
- - type: recall_at_100
1043
- value: 49.845
1044
- - type: recall_at_1000
1045
- value: 78.82000000000001
1046
- - type: recall_at_3
1047
- value: 16.997
1048
- - type: recall_at_5
1049
- value: 20.848
1050
- - task:
1051
- type: Retrieval
1052
- dataset:
1053
- type: cqadupstack/wordpress
1054
- name: MTEB CQADupstackWordpressRetrieval
1055
- config: default
1056
- split: test
1057
- revision: None
1058
- metrics:
1059
- - type: map_at_1
1060
- value: 8.01
1061
- - type: map_at_10
1062
- value: 10.889
1063
- - type: map_at_100
1064
- value: 11.562
1065
- - type: map_at_1000
1066
- value: 11.65
1067
- - type: map_at_3
1068
- value: 9.718
1069
- - type: map_at_5
1070
- value: 10.358
1071
- - type: mrr_at_1
1072
- value: 8.688
1073
- - type: mrr_at_10
1074
- value: 11.862
1075
- - type: mrr_at_100
1076
- value: 12.558
1077
- - type: mrr_at_1000
1078
- value: 12.642000000000001
1079
- - type: mrr_at_3
1080
- value: 10.598
1081
- - type: mrr_at_5
1082
- value: 11.328000000000001
1083
- - type: ndcg_at_1
1084
- value: 8.688
1085
- - type: ndcg_at_10
1086
- value: 12.959999999999999
1087
- - type: ndcg_at_100
1088
- value: 16.744
1089
- - type: ndcg_at_1000
1090
- value: 19.564999999999998
1091
- - type: ndcg_at_3
1092
- value: 10.476
1093
- - type: ndcg_at_5
1094
- value: 11.639
1095
- - type: precision_at_1
1096
- value: 8.688
1097
- - type: precision_at_10
1098
- value: 2.089
1099
- - type: precision_at_100
1100
- value: 0.43299999999999994
1101
- - type: precision_at_1000
1102
- value: 0.07200000000000001
1103
- - type: precision_at_3
1104
- value: 4.375
1105
- - type: precision_at_5
1106
- value: 3.253
1107
- - type: recall_at_1
1108
- value: 8.01
1109
- - type: recall_at_10
1110
- value: 18.589
1111
- - type: recall_at_100
1112
- value: 36.857
1113
- - type: recall_at_1000
1114
- value: 59.047000000000004
1115
- - type: recall_at_3
1116
- value: 11.774
1117
- - type: recall_at_5
1118
- value: 14.516000000000002
1119
- - task:
1120
- type: Retrieval
1121
- dataset:
1122
- type: climate-fever
1123
- name: MTEB ClimateFEVER
1124
- config: default
1125
- split: test
1126
- revision: None
1127
- metrics:
1128
- - type: map_at_1
1129
- value: 6.4719999999999995
1130
- - type: map_at_10
1131
- value: 12.322
1132
- - type: map_at_100
1133
- value: 14.122000000000002
1134
- - type: map_at_1000
1135
- value: 14.35
1136
- - type: map_at_3
1137
- value: 9.667
1138
- - type: map_at_5
1139
- value: 10.931000000000001
1140
- - type: mrr_at_1
1141
- value: 15.179
1142
- - type: mrr_at_10
1143
- value: 24.864
1144
- - type: mrr_at_100
1145
- value: 26.144000000000002
1146
- - type: mrr_at_1000
1147
- value: 26.198
1148
- - type: mrr_at_3
1149
- value: 20.999000000000002
1150
- - type: mrr_at_5
1151
- value: 23.097
1152
- - type: ndcg_at_1
1153
- value: 15.179
1154
- - type: ndcg_at_10
1155
- value: 18.951999999999998
1156
- - type: ndcg_at_100
1157
- value: 26.924
1158
- - type: ndcg_at_1000
1159
- value: 30.991999999999997
1160
- - type: ndcg_at_3
1161
- value: 13.778000000000002
1162
- - type: ndcg_at_5
1163
- value: 15.549
1164
- - type: precision_at_1
1165
- value: 15.179
1166
- - type: precision_at_10
1167
- value: 6.625
1168
- - type: precision_at_100
1169
- value: 1.516
1170
- - type: precision_at_1000
1171
- value: 0.22599999999999998
1172
- - type: precision_at_3
1173
- value: 10.51
1174
- - type: precision_at_5
1175
- value: 8.847
1176
- - type: recall_at_1
1177
- value: 6.4719999999999995
1178
- - type: recall_at_10
1179
- value: 25.191999999999997
1180
- - type: recall_at_100
1181
- value: 53.315
1182
- - type: recall_at_1000
1183
- value: 76.163
1184
- - type: recall_at_3
1185
- value: 12.834999999999999
1186
- - type: recall_at_5
1187
- value: 17.388
1188
- - task:
1189
- type: Retrieval
1190
- dataset:
1191
- type: dbpedia-entity
1192
- name: MTEB DBPedia
1193
- config: default
1194
- split: test
1195
- revision: None
1196
- metrics:
1197
- - type: map_at_1
1198
- value: 1.947
1199
- - type: map_at_10
1200
- value: 4.858
1201
- - type: map_at_100
1202
- value: 7.185999999999999
1203
- - type: map_at_1000
1204
- value: 7.931000000000001
1205
- - type: map_at_3
1206
- value: 3.2939999999999996
1207
- - type: map_at_5
1208
- value: 3.914
1209
- - type: mrr_at_1
1210
- value: 23.25
1211
- - type: mrr_at_10
1212
- value: 33.035
1213
- - type: mrr_at_100
1214
- value: 33.721000000000004
1215
- - type: mrr_at_1000
1216
- value: 33.789
1217
- - type: mrr_at_3
1218
- value: 29.75
1219
- - type: mrr_at_5
1220
- value: 31.738
1221
- - type: ndcg_at_1
1222
- value: 15.625
1223
- - type: ndcg_at_10
1224
- value: 13.211999999999998
1225
- - type: ndcg_at_100
1226
- value: 16.422
1227
- - type: ndcg_at_1000
1228
- value: 23.058999999999997
1229
- - type: ndcg_at_3
1230
- value: 14.573
1231
- - type: ndcg_at_5
1232
- value: 13.733999999999998
1233
- - type: precision_at_1
1234
- value: 23.25
1235
- - type: precision_at_10
1236
- value: 12.45
1237
- - type: precision_at_100
1238
- value: 4.192
1239
- - type: precision_at_1000
1240
- value: 1.083
1241
- - type: precision_at_3
1242
- value: 18.667
1243
- - type: precision_at_5
1244
- value: 15.950000000000001
1245
- - type: recall_at_1
1246
- value: 1.947
1247
- - type: recall_at_10
1248
- value: 9.317
1249
- - type: recall_at_100
1250
- value: 23.066
1251
- - type: recall_at_1000
1252
- value: 45.704
1253
- - type: recall_at_3
1254
- value: 4.12
1255
- - type: recall_at_5
1256
- value: 5.591
1257
- - task:
1258
- type: Classification
1259
- dataset:
1260
- type: mteb/emotion
1261
- name: MTEB EmotionClassification
1262
- config: default
1263
- split: test
1264
- revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1265
- metrics:
1266
- - type: accuracy
1267
- value: 42.855
1268
- - type: f1
1269
- value: 39.029787102377576
1270
- - task:
1271
- type: Retrieval
1272
- dataset:
1273
- type: fever
1274
- name: MTEB FEVER
1275
- config: default
1276
- split: test
1277
- revision: None
1278
- metrics:
1279
- - type: map_at_1
1280
- value: 8.461
1281
- - type: map_at_10
1282
- value: 13.655999999999999
1283
- - type: map_at_100
1284
- value: 14.499
1285
- - type: map_at_1000
1286
- value: 14.585999999999999
1287
- - type: map_at_3
1288
- value: 11.848
1289
- - type: map_at_5
1290
- value: 12.842999999999998
1291
- - type: mrr_at_1
1292
- value: 9.136
1293
- - type: mrr_at_10
1294
- value: 14.587
1295
- - type: mrr_at_100
1296
- value: 15.436
1297
- - type: mrr_at_1000
1298
- value: 15.518
1299
- - type: mrr_at_3
1300
- value: 12.690999999999999
1301
- - type: mrr_at_5
1302
- value: 13.747000000000002
1303
- - type: ndcg_at_1
1304
- value: 9.136
1305
- - type: ndcg_at_10
1306
- value: 16.958000000000002
1307
- - type: ndcg_at_100
1308
- value: 21.43
1309
- - type: ndcg_at_1000
1310
- value: 24.031
1311
- - type: ndcg_at_3
1312
- value: 13.191
1313
- - type: ndcg_at_5
1314
- value: 14.987
1315
- - type: precision_at_1
1316
- value: 9.136
1317
- - type: precision_at_10
1318
- value: 2.897
1319
- - type: precision_at_100
1320
- value: 0.532
1321
- - type: precision_at_1000
1322
- value: 0.077
1323
- - type: precision_at_3
1324
- value: 5.8709999999999996
1325
- - type: precision_at_5
1326
- value: 4.47
1327
- - type: recall_at_1
1328
- value: 8.461
1329
- - type: recall_at_10
1330
- value: 26.509
1331
- - type: recall_at_100
1332
- value: 47.776
1333
- - type: recall_at_1000
1334
- value: 68.26299999999999
1335
- - type: recall_at_3
1336
- value: 16.203
1337
- - type: recall_at_5
1338
- value: 20.505000000000003
1339
- - task:
1340
- type: Retrieval
1341
- dataset:
1342
- type: fiqa
1343
- name: MTEB FiQA2018
1344
- config: default
1345
- split: test
1346
- revision: None
1347
- metrics:
1348
- - type: map_at_1
1349
- value: 7.396
1350
- - type: map_at_10
1351
- value: 12.393
1352
- - type: map_at_100
1353
- value: 13.857
1354
- - type: map_at_1000
1355
- value: 14.086000000000002
1356
- - type: map_at_3
1357
- value: 10.545
1358
- - type: map_at_5
1359
- value: 11.505
1360
- - type: mrr_at_1
1361
- value: 15.432000000000002
1362
- - type: mrr_at_10
1363
- value: 21.615000000000002
1364
- - type: mrr_at_100
1365
- value: 22.833000000000002
1366
- - type: mrr_at_1000
1367
- value: 22.931
1368
- - type: mrr_at_3
1369
- value: 19.522000000000002
1370
- - type: mrr_at_5
1371
- value: 20.663999999999998
1372
- - type: ndcg_at_1
1373
- value: 15.432000000000002
1374
- - type: ndcg_at_10
1375
- value: 16.986
1376
- - type: ndcg_at_100
1377
- value: 23.880000000000003
1378
- - type: ndcg_at_1000
1379
- value: 28.762999999999998
1380
- - type: ndcg_at_3
1381
- value: 14.482999999999999
1382
- - type: ndcg_at_5
1383
- value: 15.334999999999999
1384
- - type: precision_at_1
1385
- value: 15.432000000000002
1386
- - type: precision_at_10
1387
- value: 4.984999999999999
1388
- - type: precision_at_100
1389
- value: 1.167
1390
- - type: precision_at_1000
1391
- value: 0.2
1392
- - type: precision_at_3
1393
- value: 9.825000000000001
1394
- - type: precision_at_5
1395
- value: 7.469
1396
- - type: recall_at_1
1397
- value: 7.396
1398
- - type: recall_at_10
1399
- value: 21.389
1400
- - type: recall_at_100
1401
- value: 48.107
1402
- - type: recall_at_1000
1403
- value: 78.366
1404
- - type: recall_at_3
1405
- value: 13.181000000000001
1406
- - type: recall_at_5
1407
- value: 16.611
1408
- - task:
1409
- type: Retrieval
1410
- dataset:
1411
- type: hotpotqa
1412
- name: MTEB HotpotQA
1413
- config: default
1414
- split: test
1415
- revision: None
1416
- metrics:
1417
- - type: map_at_1
1418
- value: 11.884
1419
- - type: map_at_10
1420
- value: 17.09
1421
- - type: map_at_100
1422
- value: 17.96
1423
- - type: map_at_1000
1424
- value: 18.081
1425
- - type: map_at_3
1426
- value: 15.296000000000001
1427
- - type: map_at_5
1428
- value: 16.289
1429
- - type: mrr_at_1
1430
- value: 23.768
1431
- - type: mrr_at_10
1432
- value: 29.991
1433
- - type: mrr_at_100
1434
- value: 30.862000000000002
1435
- - type: mrr_at_1000
1436
- value: 30.935000000000002
1437
- - type: mrr_at_3
1438
- value: 27.986
1439
- - type: mrr_at_5
1440
- value: 29.078
1441
- - type: ndcg_at_1
1442
- value: 23.768
1443
- - type: ndcg_at_10
1444
- value: 22.634999999999998
1445
- - type: ndcg_at_100
1446
- value: 27.059
1447
- - type: ndcg_at_1000
1448
- value: 30.145
1449
- - type: ndcg_at_3
1450
- value: 19.058
1451
- - type: ndcg_at_5
1452
- value: 20.762
1453
- - type: precision_at_1
1454
- value: 23.768
1455
- - type: precision_at_10
1456
- value: 5.2490000000000006
1457
- - type: precision_at_100
1458
- value: 0.8829999999999999
1459
- - type: precision_at_1000
1460
- value: 0.13
1461
- - type: precision_at_3
1462
- value: 12.091000000000001
1463
- - type: precision_at_5
1464
- value: 8.605
1465
- - type: recall_at_1
1466
- value: 11.884
1467
- - type: recall_at_10
1468
- value: 26.246000000000002
1469
- - type: recall_at_100
1470
- value: 44.153
1471
- - type: recall_at_1000
1472
- value: 64.889
1473
- - type: recall_at_3
1474
- value: 18.136
1475
- - type: recall_at_5
1476
- value: 21.512
1477
- - task:
1478
- type: Classification
1479
- dataset:
1480
- type: mteb/imdb
1481
- name: MTEB ImdbClassification
1482
- config: default
1483
- split: test
1484
- revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1485
- metrics:
1486
- - type: accuracy
1487
- value: 71.9232
1488
- - type: ap
1489
- value: 66.56619827391917
1490
- - type: f1
1491
- value: 71.60536244284128
1492
- - task:
1493
- type: Retrieval
1494
- dataset:
1495
- type: msmarco
1496
- name: MTEB MSMARCO
1497
- config: default
1498
- split: dev
1499
- revision: None
1500
- metrics:
1501
- - type: map_at_1
1502
- value: 3.037
1503
- - type: map_at_10
1504
- value: 5.414
1505
- - type: map_at_100
1506
- value: 6.072
1507
- - type: map_at_1000
1508
- value: 6.172
1509
- - type: map_at_3
1510
- value: 4.437
1511
- - type: map_at_5
1512
- value: 4.939
1513
- - type: mrr_at_1
1514
- value: 3.123
1515
- - type: mrr_at_10
1516
- value: 5.572
1517
- - type: mrr_at_100
1518
- value: 6.235
1519
- - type: mrr_at_1000
1520
- value: 6.334
1521
- - type: mrr_at_3
1522
- value: 4.563
1523
- - type: mrr_at_5
1524
- value: 5.09
1525
- - type: ndcg_at_1
1526
- value: 3.123
1527
- - type: ndcg_at_10
1528
- value: 7.027
1529
- - type: ndcg_at_100
1530
- value: 10.776
1531
- - type: ndcg_at_1000
1532
- value: 13.904
1533
- - type: ndcg_at_3
1534
- value: 4.95
1535
- - type: ndcg_at_5
1536
- value: 5.865
1537
- - type: precision_at_1
1538
- value: 3.123
1539
- - type: precision_at_10
1540
- value: 1.252
1541
- - type: precision_at_100
1542
- value: 0.32299999999999995
1543
- - type: precision_at_1000
1544
- value: 0.059000000000000004
1545
- - type: precision_at_3
1546
- value: 2.168
1547
- - type: precision_at_5
1548
- value: 1.7680000000000002
1549
- - type: recall_at_1
1550
- value: 3.037
1551
- - type: recall_at_10
1552
- value: 12.11
1553
- - type: recall_at_100
1554
- value: 30.714999999999996
1555
- - type: recall_at_1000
1556
- value: 56.006
1557
- - type: recall_at_3
1558
- value: 6.3229999999999995
1559
- - type: recall_at_5
1560
- value: 8.518
1561
- - task:
1562
- type: Classification
1563
- dataset:
1564
- type: mteb/mtop_domain
1565
- name: MTEB MTOPDomainClassification (en)
1566
- config: en
1567
- split: test
1568
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1569
- metrics:
1570
- - type: accuracy
1571
- value: 91.24259005927954
1572
- - type: f1
1573
- value: 90.7594022786747
1574
- - task:
1575
- type: Classification
1576
- dataset:
1577
- type: mteb/mtop_intent
1578
- name: MTEB MTOPIntentClassification (en)
1579
- config: en
1580
- split: test
1581
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1582
- metrics:
1583
- - type: accuracy
1584
- value: 74.08344733242134
1585
- - type: f1
1586
- value: 52.377556461789055
1587
- - task:
1588
- type: Classification
1589
- dataset:
1590
- type: mteb/amazon_massive_intent
1591
- name: MTEB MassiveIntentClassification (en)
1592
- config: en
1593
- split: test
1594
- revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1595
- metrics:
1596
- - type: accuracy
1597
- value: 69.99327505043712
1598
- - type: f1
1599
- value: 66.15141376479805
1600
- - task:
1601
- type: Classification
1602
- dataset:
1603
- type: mteb/amazon_massive_scenario
1604
- name: MTEB MassiveScenarioClassification (en)
1605
- config: en
1606
- split: test
1607
- revision: 7d571f92784cd94a019292a1f45445077d0ef634
1608
- metrics:
1609
- - type: accuracy
1610
- value: 75.1546738399462
1611
- - type: f1
1612
- value: 74.83013584700711
1613
- - task:
1614
- type: Clustering
1615
- dataset:
1616
- type: mteb/medrxiv-clustering-p2p
1617
- name: MTEB MedrxivClusteringP2P
1618
- config: default
1619
- split: test
1620
- revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1621
- metrics:
1622
- - type: v_measure
1623
- value: 30.146364191412356
1624
- - task:
1625
- type: Clustering
1626
- dataset:
1627
- type: mteb/medrxiv-clustering-s2s
1628
- name: MTEB MedrxivClusteringS2S
1629
- config: default
1630
- split: test
1631
- revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1632
- metrics:
1633
- - type: v_measure
1634
- value: 26.96347584990607
1635
- - task:
1636
- type: Reranking
1637
- dataset:
1638
- type: mteb/mind_small
1639
- name: MTEB MindSmallReranking
1640
- config: default
1641
- split: test
1642
- revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1643
- metrics:
1644
- - type: map
1645
- value: 29.520993847103533
1646
- - type: mrr
1647
- value: 30.402007095845374
1648
- - task:
1649
- type: Retrieval
1650
- dataset:
1651
- type: nfcorpus
1652
- name: MTEB NFCorpus
1653
- config: default
1654
- split: test
1655
- revision: None
1656
- metrics:
1657
- - type: map_at_1
1658
- value: 1.72
1659
- - type: map_at_10
1660
- value: 4.041
1661
- - type: map_at_100
1662
- value: 5.356000000000001
1663
- - type: map_at_1000
1664
- value: 6.413
1665
- - type: map_at_3
1666
- value: 2.9770000000000003
1667
- - type: map_at_5
1668
- value: 3.3689999999999998
1669
- - type: mrr_at_1
1670
- value: 21.981
1671
- - type: mrr_at_10
1672
- value: 30.286
1673
- - type: mrr_at_100
1674
- value: 31.272
1675
- - type: mrr_at_1000
1676
- value: 31.347
1677
- - type: mrr_at_3
1678
- value: 27.193
1679
- - type: mrr_at_5
1680
- value: 28.694999999999997
1681
- - type: ndcg_at_1
1682
- value: 19.814
1683
- - type: ndcg_at_10
1684
- value: 15.732
1685
- - type: ndcg_at_100
1686
- value: 16.033
1687
- - type: ndcg_at_1000
1688
- value: 25.865
1689
- - type: ndcg_at_3
1690
- value: 17.944
1691
- - type: ndcg_at_5
1692
- value: 16.634
1693
- - type: precision_at_1
1694
- value: 21.981
1695
- - type: precision_at_10
1696
- value: 12.786
1697
- - type: precision_at_100
1698
- value: 4.83
1699
- - type: precision_at_1000
1700
- value: 1.765
1701
- - type: precision_at_3
1702
- value: 17.75
1703
- - type: precision_at_5
1704
- value: 15.232000000000001
1705
- - type: recall_at_1
1706
- value: 1.72
1707
- - type: recall_at_10
1708
- value: 7.436
1709
- - type: recall_at_100
1710
- value: 20.275000000000002
1711
- - type: recall_at_1000
1712
- value: 54.19500000000001
1713
- - type: recall_at_3
1714
- value: 3.787
1715
- - type: recall_at_5
1716
- value: 4.829
1717
- - task:
1718
- type: Retrieval
1719
- dataset:
1720
- type: nq
1721
- name: MTEB NQ
1722
- config: default
1723
- split: test
1724
- revision: None
1725
- metrics:
1726
- - type: map_at_1
1727
- value: 7.964
1728
- - type: map_at_10
1729
- value: 14.025000000000002
1730
- - type: map_at_100
1731
- value: 15.222
1732
- - type: map_at_1000
1733
- value: 15.32
1734
- - type: map_at_3
1735
- value: 11.886
1736
- - type: map_at_5
1737
- value: 13.056999999999999
1738
- - type: mrr_at_1
1739
- value: 9.183
1740
- - type: mrr_at_10
1741
- value: 15.651000000000002
1742
- - type: mrr_at_100
1743
- value: 16.753999999999998
1744
- - type: mrr_at_1000
1745
- value: 16.833000000000002
1746
- - type: mrr_at_3
1747
- value: 13.437
1748
- - type: mrr_at_5
1749
- value: 14.69
1750
- - type: ndcg_at_1
1751
- value: 9.183
1752
- - type: ndcg_at_10
1753
- value: 17.96
1754
- - type: ndcg_at_100
1755
- value: 23.823
1756
- - type: ndcg_at_1000
1757
- value: 26.461000000000002
1758
- - type: ndcg_at_3
1759
- value: 13.536999999999999
1760
- - type: ndcg_at_5
1761
- value: 15.642
1762
- - type: precision_at_1
1763
- value: 9.183
1764
- - type: precision_at_10
1765
- value: 3.366
1766
- - type: precision_at_100
1767
- value: 0.67
1768
- - type: precision_at_1000
1769
- value: 0.092
1770
- - type: precision_at_3
1771
- value: 6.547
1772
- - type: precision_at_5
1773
- value: 5.098
1774
- - type: recall_at_1
1775
- value: 7.964
1776
- - type: recall_at_10
1777
- value: 28.599000000000004
1778
- - type: recall_at_100
1779
- value: 55.381
1780
- - type: recall_at_1000
1781
- value: 75.63
1782
- - type: recall_at_3
1783
- value: 16.77
1784
- - type: recall_at_5
1785
- value: 21.671000000000003
1786
- - task:
1787
- type: Retrieval
1788
- dataset:
1789
- type: quora
1790
- name: MTEB QuoraRetrieval
1791
- config: default
1792
- split: test
1793
- revision: None
1794
- metrics:
1795
- - type: map_at_1
1796
- value: 59.846999999999994
1797
- - type: map_at_10
1798
- value: 73.18599999999999
1799
- - type: map_at_100
1800
- value: 74.055
1801
- - type: map_at_1000
1802
- value: 74.09
1803
- - type: map_at_3
1804
- value: 69.95700000000001
1805
- - type: map_at_5
1806
- value: 71.925
1807
- - type: mrr_at_1
1808
- value: 69.0
1809
- - type: mrr_at_10
1810
- value: 77.23299999999999
1811
- - type: mrr_at_100
1812
- value: 77.52
1813
- - type: mrr_at_1000
1814
- value: 77.526
1815
- - type: mrr_at_3
1816
- value: 75.59
1817
- - type: mrr_at_5
1818
- value: 76.63799999999999
1819
- - type: ndcg_at_1
1820
- value: 69.02000000000001
1821
- - type: ndcg_at_10
1822
- value: 78.226
1823
- - type: ndcg_at_100
1824
- value: 80.60199999999999
1825
- - type: ndcg_at_1000
1826
- value: 80.971
1827
- - type: ndcg_at_3
1828
- value: 74.124
1829
- - type: ndcg_at_5
1830
- value: 76.265
1831
- - type: precision_at_1
1832
- value: 69.02000000000001
1833
- - type: precision_at_10
1834
- value: 12.102
1835
- - type: precision_at_100
1836
- value: 1.468
1837
- - type: precision_at_1000
1838
- value: 0.155
1839
- - type: precision_at_3
1840
- value: 32.5
1841
- - type: precision_at_5
1842
- value: 21.7
1843
- - type: recall_at_1
1844
- value: 59.846999999999994
1845
- - type: recall_at_10
1846
- value: 88.485
1847
- - type: recall_at_100
1848
- value: 97.425
1849
- - type: recall_at_1000
1850
- value: 99.523
1851
- - type: recall_at_3
1852
- value: 77.051
1853
- - type: recall_at_5
1854
- value: 82.762
1855
- - task:
1856
- type: Clustering
1857
- dataset:
1858
- type: mteb/reddit-clustering
1859
- name: MTEB RedditClustering
1860
- config: default
1861
- split: test
1862
- revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1863
- metrics:
1864
- - type: v_measure
1865
- value: 38.67296729610079
1866
- - task:
1867
- type: Clustering
1868
- dataset:
1869
- type: mteb/reddit-clustering-p2p
1870
- name: MTEB RedditClusteringP2P
1871
- config: default
1872
- split: test
1873
- revision: 282350215ef01743dc01b456c7f5241fa8937f16
1874
- metrics:
1875
- - type: v_measure
1876
- value: 53.42017351823769
1877
- - task:
1878
- type: Retrieval
1879
- dataset:
1880
- type: scidocs
1881
- name: MTEB SCIDOCS
1882
- config: default
1883
- split: test
1884
- revision: None
1885
- metrics:
1886
- - type: map_at_1
1887
- value: 0.893
1888
- - type: map_at_10
1889
- value: 2.804
1890
- - type: map_at_100
1891
- value: 3.6740000000000004
1892
- - type: map_at_1000
1893
- value: 3.94
1894
- - type: map_at_3
1895
- value: 1.926
1896
- - type: map_at_5
1897
- value: 2.363
1898
- - type: mrr_at_1
1899
- value: 4.3
1900
- - type: mrr_at_10
1901
- value: 9.520000000000001
1902
- - type: mrr_at_100
1903
- value: 10.692
1904
- - type: mrr_at_1000
1905
- value: 10.841000000000001
1906
- - type: mrr_at_3
1907
- value: 7.6
1908
- - type: mrr_at_5
1909
- value: 8.63
1910
- - type: ndcg_at_1
1911
- value: 4.3
1912
- - type: ndcg_at_10
1913
- value: 5.531
1914
- - type: ndcg_at_100
1915
- value: 10.512
1916
- - type: ndcg_at_1000
1917
- value: 16.683
1918
- - type: ndcg_at_3
1919
- value: 4.632
1920
- - type: ndcg_at_5
1921
- value: 4.3229999999999995
1922
- - type: precision_at_1
1923
- value: 4.3
1924
- - type: precision_at_10
1925
- value: 3.16
1926
- - type: precision_at_100
1927
- value: 1.065
1928
- - type: precision_at_1000
1929
- value: 0.256
1930
- - type: precision_at_3
1931
- value: 4.667000000000001
1932
- - type: precision_at_5
1933
- value: 4.1000000000000005
1934
- - type: recall_at_1
1935
- value: 0.893
1936
- - type: recall_at_10
1937
- value: 6.428000000000001
1938
- - type: recall_at_100
1939
- value: 21.662
1940
- - type: recall_at_1000
1941
- value: 52.162
1942
- - type: recall_at_3
1943
- value: 2.868
1944
- - type: recall_at_5
1945
- value: 4.188
1946
- - task:
1947
- type: STS
1948
- dataset:
1949
- type: mteb/sickr-sts
1950
- name: MTEB SICK-R
1951
- config: default
1952
- split: test
1953
- revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1954
- metrics:
1955
- - type: cos_sim_spearman
1956
- value: 69.34396953516386
1957
- - task:
1958
- type: STS
1959
- dataset:
1960
- type: mteb/sts12-sts
1961
- name: MTEB STS12
1962
- config: default
1963
- split: test
1964
- revision: a0d554a64d88156834ff5ae9920b964011b16384
1965
- metrics:
1966
- - type: cos_sim_spearman
1967
- value: 60.094374065360746
1968
- - task:
1969
- type: STS
1970
- dataset:
1971
- type: mteb/sts13-sts
1972
- name: MTEB STS13
1973
- config: default
1974
- split: test
1975
- revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1976
- metrics:
1977
- - type: cos_sim_spearman
1978
- value: 72.51503781013379
1979
- - task:
1980
- type: STS
1981
- dataset:
1982
- type: mteb/sts14-sts
1983
- name: MTEB STS14
1984
- config: default
1985
- split: test
1986
- revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1987
- metrics:
1988
- - type: cos_sim_spearman
1989
- value: 66.6954698644186
1990
- - task:
1991
- type: STS
1992
- dataset:
1993
- type: mteb/sts15-sts
1994
- name: MTEB STS15
1995
- config: default
1996
- split: test
1997
- revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1998
- metrics:
1999
- - type: cos_sim_spearman
2000
- value: 77.69462578028768
2001
- - task:
2002
- type: STS
2003
- dataset:
2004
- type: mteb/sts16-sts
2005
- name: MTEB STS16
2006
- config: default
2007
- split: test
2008
- revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2009
- metrics:
2010
- - type: cos_sim_spearman
2011
- value: 75.9397626457859
2012
- - task:
2013
- type: STS
2014
- dataset:
2015
- type: mteb/sts17-crosslingual-sts
2016
- name: MTEB STS17 (en-en)
2017
- config: en-en
2018
- split: test
2019
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2020
- metrics:
2021
- - type: cos_sim_spearman
2022
- value: 81.67242768943406
2023
- - task:
2024
- type: STS
2025
- dataset:
2026
- type: mteb/sts22-crosslingual-sts
2027
- name: MTEB STS22 (en)
2028
- config: en
2029
- split: test
2030
- revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2031
- metrics:
2032
- - type: cos_sim_spearman
2033
- value: 63.7027324700292
2034
- - task:
2035
- type: STS
2036
- dataset:
2037
- type: mteb/stsbenchmark-sts
2038
- name: MTEB STSBenchmark
2039
- config: default
2040
- split: test
2041
- revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2042
- metrics:
2043
- - type: cos_sim_spearman
2044
- value: 73.36074244064153
2045
- - task:
2046
- type: Reranking
2047
- dataset:
2048
- type: mteb/scidocs-reranking
2049
- name: MTEB SciDocsRR
2050
- config: default
2051
- split: test
2052
- revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2053
- metrics:
2054
- - type: map
2055
- value: 67.75984402370518
2056
- - type: mrr
2057
- value: 86.9951798383171
2058
- - task:
2059
- type: Retrieval
2060
- dataset:
2061
- type: scifact
2062
- name: MTEB SciFact
2063
- config: default
2064
- split: test
2065
- revision: None
2066
- metrics:
2067
- - type: map_at_1
2068
- value: 24.583
2069
- - type: map_at_10
2070
- value: 33.125
2071
- - type: map_at_100
2072
- value: 34.14
2073
- - type: map_at_1000
2074
- value: 34.22
2075
- - type: map_at_3
2076
- value: 29.616
2077
- - type: map_at_5
2078
- value: 31.896
2079
- - type: mrr_at_1
2080
- value: 26.333000000000002
2081
- - type: mrr_at_10
2082
- value: 34.437
2083
- - type: mrr_at_100
2084
- value: 35.363
2085
- - type: mrr_at_1000
2086
- value: 35.433
2087
- - type: mrr_at_3
2088
- value: 31.333
2089
- - type: mrr_at_5
2090
- value: 33.267
2091
- - type: ndcg_at_1
2092
- value: 26.333000000000002
2093
- - type: ndcg_at_10
2094
- value: 38.311
2095
- - type: ndcg_at_100
2096
- value: 43.923
2097
- - type: ndcg_at_1000
2098
- value: 45.923
2099
- - type: ndcg_at_3
2100
- value: 31.596000000000004
2101
- - type: ndcg_at_5
2102
- value: 35.448
2103
- - type: precision_at_1
2104
- value: 26.333000000000002
2105
- - type: precision_at_10
2106
- value: 5.933
2107
- - type: precision_at_100
2108
- value: 0.91
2109
- - type: precision_at_1000
2110
- value: 0.109
2111
- - type: precision_at_3
2112
- value: 13.0
2113
- - type: precision_at_5
2114
- value: 9.933
2115
- - type: recall_at_1
2116
- value: 24.583
2117
- - type: recall_at_10
2118
- value: 53.417
2119
- - type: recall_at_100
2120
- value: 80.989
2121
- - type: recall_at_1000
2122
- value: 96.322
2123
- - type: recall_at_3
2124
- value: 35.611
2125
- - type: recall_at_5
2126
- value: 44.833
2127
- - task:
2128
- type: PairClassification
2129
- dataset:
2130
- type: mteb/sprintduplicatequestions-pairclassification
2131
- name: MTEB SprintDuplicateQuestions
2132
- config: default
2133
- split: test
2134
- revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2135
- metrics:
2136
- - type: cos_sim_accuracy
2137
- value: 99.48514851485149
2138
- - type: cos_sim_ap
2139
- value: 77.36426466374054
2140
- - type: cos_sim_f1
2141
- value: 72.0702116675271
2142
- - type: cos_sim_precision
2143
- value: 74.49306296691569
2144
- - type: cos_sim_recall
2145
- value: 69.8
2146
- - type: dot_accuracy
2147
- value: 99.15049504950495
2148
- - type: dot_ap
2149
- value: 46.792474140260715
2150
- - type: dot_f1
2151
- value: 48.76476906552094
2152
- - type: dot_precision
2153
- value: 52.66821345707656
2154
- - type: dot_recall
2155
- value: 45.4
2156
- - type: euclidean_accuracy
2157
- value: 99.46534653465346
2158
- - type: euclidean_ap
2159
- value: 74.1978837990589
2160
- - type: euclidean_f1
2161
- value: 69.47256259989345
2162
- - type: euclidean_precision
2163
- value: 74.34435575826683
2164
- - type: euclidean_recall
2165
- value: 65.2
2166
- - type: manhattan_accuracy
2167
- value: 99.47128712871287
2168
- - type: manhattan_ap
2169
- value: 75.31910551743364
2170
- - type: manhattan_f1
2171
- value: 70.1582105837425
2172
- - type: manhattan_precision
2173
- value: 77.19087635054022
2174
- - type: manhattan_recall
2175
- value: 64.3
2176
- - type: max_accuracy
2177
- value: 99.48514851485149
2178
- - type: max_ap
2179
- value: 77.36426466374054
2180
- - type: max_f1
2181
- value: 72.0702116675271
2182
- - task:
2183
- type: Clustering
2184
- dataset:
2185
- type: mteb/stackexchange-clustering
2186
- name: MTEB StackExchangeClustering
2187
- config: default
2188
- split: test
2189
- revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2190
- metrics:
2191
- - type: v_measure
2192
- value: 59.353792480720436
2193
- - task:
2194
- type: Clustering
2195
- dataset:
2196
- type: mteb/stackexchange-clustering-p2p
2197
- name: MTEB StackExchangeClusteringP2P
2198
- config: default
2199
- split: test
2200
- revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2201
- metrics:
2202
- - type: v_measure
2203
- value: 31.474896484744836
2204
- - task:
2205
- type: Reranking
2206
- dataset:
2207
- type: mteb/stackoverflowdupquestions-reranking
2208
- name: MTEB StackOverflowDupQuestions
2209
- config: default
2210
- split: test
2211
- revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2212
- metrics:
2213
- - type: map
2214
- value: 40.82378653430986
2215
- - type: mrr
2216
- value: 41.13905600118835
2217
- - task:
2218
- type: Summarization
2219
- dataset:
2220
- type: mteb/summeval
2221
- name: MTEB SummEval
2222
- config: default
2223
- split: test
2224
- revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2225
- metrics:
2226
- - type: cos_sim_pearson
2227
- value: 31.08154836998798
2228
- - type: cos_sim_spearman
2229
- value: 31.232033308845907
2230
- - type: dot_pearson
2231
- value: 23.767593496465828
2232
- - type: dot_spearman
2233
- value: 25.6201612766572
2234
- - task:
2235
- type: Retrieval
2236
- dataset:
2237
- type: trec-covid
2238
- name: MTEB TRECCOVID
2239
- config: default
2240
- split: test
2241
- revision: None
2242
- metrics:
2243
- - type: map_at_1
2244
- value: 0.186
2245
- - type: map_at_10
2246
- value: 1.1809999999999998
2247
- - type: map_at_100
2248
- value: 5.21
2249
- - type: map_at_1000
2250
- value: 12.447999999999999
2251
- - type: map_at_3
2252
- value: 0.44200000000000006
2253
- - type: map_at_5
2254
- value: 0.673
2255
- - type: mrr_at_1
2256
- value: 72.0
2257
- - type: mrr_at_10
2258
- value: 80.01899999999999
2259
- - type: mrr_at_100
2260
- value: 80.42099999999999
2261
- - type: mrr_at_1000
2262
- value: 80.42099999999999
2263
- - type: mrr_at_3
2264
- value: 78.0
2265
- - type: mrr_at_5
2266
- value: 79.4
2267
- - type: ndcg_at_1
2268
- value: 66.0
2269
- - type: ndcg_at_10
2270
- value: 56.041
2271
- - type: ndcg_at_100
2272
- value: 37.987
2273
- - type: ndcg_at_1000
2274
- value: 34.198
2275
- - type: ndcg_at_3
2276
- value: 60.23500000000001
2277
- - type: ndcg_at_5
2278
- value: 58.025999999999996
2279
- - type: precision_at_1
2280
- value: 72.0
2281
- - type: precision_at_10
2282
- value: 60.4
2283
- - type: precision_at_100
2284
- value: 38.940000000000005
2285
- - type: precision_at_1000
2286
- value: 16.106
2287
- - type: precision_at_3
2288
- value: 63.333
2289
- - type: precision_at_5
2290
- value: 61.6
2291
- - type: recall_at_1
2292
- value: 0.186
2293
- - type: recall_at_10
2294
- value: 1.458
2295
- - type: recall_at_100
2296
- value: 8.455
2297
- - type: recall_at_1000
2298
- value: 33.141999999999996
2299
- - type: recall_at_3
2300
- value: 0.461
2301
- - type: recall_at_5
2302
- value: 0.756
2303
- - task:
2304
- type: Retrieval
2305
- dataset:
2306
- type: webis-touche2020
2307
- name: MTEB Touche2020
2308
- config: default
2309
- split: test
2310
- revision: None
2311
- metrics:
2312
- - type: map_at_1
2313
- value: 2.2849999999999997
2314
- - type: map_at_10
2315
- value: 6.909
2316
- - type: map_at_100
2317
- value: 11.231
2318
- - type: map_at_1000
2319
- value: 12.472
2320
- - type: map_at_3
2321
- value: 3.53
2322
- - type: map_at_5
2323
- value: 4.675
2324
- - type: mrr_at_1
2325
- value: 26.531
2326
- - type: mrr_at_10
2327
- value: 40.73
2328
- - type: mrr_at_100
2329
- value: 41.637
2330
- - type: mrr_at_1000
2331
- value: 41.647
2332
- - type: mrr_at_3
2333
- value: 34.354
2334
- - type: mrr_at_5
2335
- value: 38.741
2336
- - type: ndcg_at_1
2337
- value: 24.490000000000002
2338
- - type: ndcg_at_10
2339
- value: 19.17
2340
- - type: ndcg_at_100
2341
- value: 29.946
2342
- - type: ndcg_at_1000
2343
- value: 40.842
2344
- - type: ndcg_at_3
2345
- value: 19.088
2346
- - type: ndcg_at_5
2347
- value: 19.445999999999998
2348
- - type: precision_at_1
2349
- value: 26.531
2350
- - type: precision_at_10
2351
- value: 17.959
2352
- - type: precision_at_100
2353
- value: 6.468999999999999
2354
- - type: precision_at_1000
2355
- value: 1.351
2356
- - type: precision_at_3
2357
- value: 19.048000000000002
2358
- - type: precision_at_5
2359
- value: 19.592000000000002
2360
- - type: recall_at_1
2361
- value: 2.2849999999999997
2362
- - type: recall_at_10
2363
- value: 12.973
2364
- - type: recall_at_100
2365
- value: 40.239999999999995
2366
- - type: recall_at_1000
2367
- value: 73.247
2368
- - type: recall_at_3
2369
- value: 4.407
2370
- - type: recall_at_5
2371
- value: 6.908
2372
- - task:
2373
- type: Classification
2374
- dataset:
2375
- type: mteb/toxic_conversations_50k
2376
- name: MTEB ToxicConversationsClassification
2377
- config: default
2378
- split: test
2379
- revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2380
- metrics:
2381
- - type: accuracy
2382
- value: 68.405
2383
- - type: ap
2384
- value: 13.9913678628558
2385
- - type: f1
2386
- value: 53.209691917560285
2387
- - task:
2388
- type: Classification
2389
- dataset:
2390
- type: mteb/tweet_sentiment_extraction
2391
- name: MTEB TweetSentimentExtractionClassification
2392
- config: default
2393
- split: test
2394
- revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2395
- metrics:
2396
- - type: accuracy
2397
- value: 56.080928126768534
2398
- - type: f1
2399
- value: 56.36329965117965
2400
- - task:
2401
- type: Clustering
2402
- dataset:
2403
- type: mteb/twentynewsgroups-clustering
2404
- name: MTEB TwentyNewsgroupsClustering
2405
- config: default
2406
- split: test
2407
- revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2408
- metrics:
2409
- - type: v_measure
2410
- value: 31.540976715818065
2411
- - task:
2412
- type: PairClassification
2413
- dataset:
2414
- type: mteb/twittersemeval2015-pairclassification
2415
- name: MTEB TwitterSemEval2015
2416
- config: default
2417
- split: test
2418
- revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2419
- metrics:
2420
- - type: cos_sim_accuracy
2421
- value: 82.90516778923526
2422
- - type: cos_sim_ap
2423
- value: 61.5394989621502
2424
- - type: cos_sim_f1
2425
- value: 58.02297689685646
2426
- - type: cos_sim_precision
2427
- value: 55.62817719680465
2428
- - type: cos_sim_recall
2429
- value: 60.633245382585756
2430
- - type: dot_accuracy
2431
- value: 78.95928950348691
2432
- - type: dot_ap
2433
- value: 48.61088896690895
2434
- - type: dot_f1
2435
- value: 51.0104674059488
2436
- - type: dot_precision
2437
- value: 42.00375490698071
2438
- - type: dot_recall
2439
- value: 64.93403693931398
2440
- - type: euclidean_accuracy
2441
- value: 82.476008821601
2442
- - type: euclidean_ap
2443
- value: 59.59406971314053
2444
- - type: euclidean_f1
2445
- value: 56.424962447084525
2446
- - type: euclidean_precision
2447
- value: 58.47721483158789
2448
- - type: euclidean_recall
2449
- value: 54.51187335092348
2450
- - type: manhattan_accuracy
2451
- value: 82.66078559933241
2452
- - type: manhattan_ap
2453
- value: 60.414321716856925
2454
- - type: manhattan_f1
2455
- value: 56.88221089348002
2456
- - type: manhattan_precision
2457
- value: 57.86026200873362
2458
- - type: manhattan_recall
2459
- value: 55.93667546174142
2460
- - type: max_accuracy
2461
- value: 82.90516778923526
2462
- - type: max_ap
2463
- value: 61.5394989621502
2464
- - type: max_f1
2465
- value: 58.02297689685646
2466
- - task:
2467
- type: PairClassification
2468
- dataset:
2469
- type: mteb/twitterurlcorpus-pairclassification
2470
- name: MTEB TwitterURLCorpus
2471
- config: default
2472
- split: test
2473
- revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2474
- metrics:
2475
- - type: cos_sim_accuracy
2476
- value: 85.71622618077386
2477
- - type: cos_sim_ap
2478
- value: 77.72774861009667
2479
- - type: cos_sim_f1
2480
- value: 71.40275165062152
2481
- - type: cos_sim_precision
2482
- value: 68.53359767754726
2483
- - type: cos_sim_recall
2484
- value: 74.52263627964275
2485
- - type: dot_accuracy
2486
- value: 83.97174680793262
2487
- - type: dot_ap
2488
- value: 72.89480417427734
2489
- - type: dot_f1
2490
- value: 68.57803792366198
2491
- - type: dot_precision
2492
- value: 62.94151708164447
2493
- - type: dot_recall
2494
- value: 75.32337542346782
2495
- - type: euclidean_accuracy
2496
- value: 84.88570652384834
2497
- - type: euclidean_ap
2498
- value: 75.78371710915128
2499
- - type: euclidean_f1
2500
- value: 69.44268877569989
2501
- - type: euclidean_precision
2502
- value: 67.1435761018046
2503
- - type: euclidean_recall
2504
- value: 71.90483523252233
2505
- - type: manhattan_accuracy
2506
- value: 85.6114409904141
2507
- - type: manhattan_ap
2508
- value: 77.38579436755944
2509
- - type: manhattan_f1
2510
- value: 70.8608538430316
2511
- - type: manhattan_precision
2512
- value: 68.03656203500319
2513
- - type: manhattan_recall
2514
- value: 73.92978133661842
2515
- - type: max_accuracy
2516
- value: 85.71622618077386
2517
- - type: max_ap
2518
- value: 77.72774861009667
2519
- - type: max_f1
2520
- value: 71.40275165062152
2521
  ---
2522
 
2523
  # LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
 
23
  - fever
24
  - hotpot_qa
25
  - mteb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  ---
27
 
28
  # LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders